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ABSTRACT 7 

The occurrence of plastic waste materials in the aquatic environment is receiving enormous 8 

attention all over the world due to its negative impacts on aquatic organisms. Micropellet litters 9 

have been found to adsorb and absorbs persistent organic endocrine disrupting chemicals 10 

(EDCs). Endocrine disrupting chemicals are recognized toxic chemicals to humans and 11 

organisms. This study quantifies occurrence of micropellet particles in Lagos Lagoon and their 12 

EDCs contents. Surface water and sediment sample collection was conducted from 2016 to 2017 13 

at eight sampling locations with three points established in each of the sampling station. The 14 

chemical analysis of EDCs was conducted by gas chromatography coupled with electron capture 15 

detector and flame ionization detector. Micropellet particles occurrence was highest in surface 16 

water (67%) compared to (33%) in sediment during the period of sampling. EDCs contents 17 

reflect contamination of PCBs and PAHs in the extracted micropellet particles. Some sampling 18 

stations contained relatively higher PAHs concentrations but very low concentration of PCBs. 19 

Since, micropellet particles and EDCs cannot be removed completely from the aquatic 20 

environment, reduction of impending hazards ought to rely on curtailing disposal of plastic 21 

materials and sensitizing the populace on general disposal methods in order to minimize 22 

interaction of plastic particles with EDCs which are likely to pose significant effects on aquatic 23 

fauna. 24 
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I. 0  INTRODUCTION 28 

 29 

Lagos lagoon in Nigeria supplies a number of essential services for indigenous and non- 30 

indigenous people in Lagos (Ajagbe et al., 2012). High influence of solid waste litters in and 31 

around the Lagos lagoon has been reported by several authors (Ajao, 1996; Amaeze et al., 2012; 32 

Abiodun and Oyeleke, 2016, Soneye et al., 2018). In Nigeria, plastic litter materials in coastal 33 

areas as been reported by (Amaeze et al., 2012; Abiodun and Oyeleke, 2016, Soneye et al., 34 

2018) as one of the most common litters in Lagos lagoon and are likely to be  a major sources of 35 

hydrophobic endocrine disrupting chemicals contributing to the significant decline in aquatic 36 

resources thus threatening their long-term sustainability. Plastic wastes materials is one of the 37 

most documented waste in aquatic ecosystem globally  (Derraik, 2002;UNEP, 2016) with greater 38 

negative impact on aquatic fauna (Gibb et al., 2O17). In the last few decades, plastic products 39 

have developed into one of the most largely used materials for many applications. World total 40 

plastic production continues to increase yearly (Duis and Coors, 2016) owing to the plasticity 41 

and the durability of most of the plastic products (PlasticEurope, 2015, 2017). Due to the 42 

extensive utilization of plastic in many applications coupled with improper disposal methods of 43 

plastic waste materials consistently in waterways leading to fragmentation into microparticles 44 

due to weathering action and ultra violet solar radiation (Ryan et al., 2009; Andrady, 2011). 45 

Plastic wastes materials was proposed as hazardous materials (Rochman et al., 2013) when 46 

found in the aquatic environment (UNEP, 2016). Due to increase in population density and 47 

economic growth rate there is a clamour for affordable products which have led to increased 48 

plastics production as well as indiscriminate increase in plastic waste generation in Nigeria 49 

(Olanrewaju and Ilemobade, 2009). Despite the intervention of the government in Nigeria, on 50 

proper waste disposal methods, solid waste still find their way into the Lagos lagoon at an 51 



 

 

alarming rate (Olanrewaju and Ilemobade, 2009; Babayemi, et al., 2018).Unlike other 52 

substances, majority of plastic waste materials are not easily biodegradable, but instead 53 

photodegradable into smaller fragment (Arthur et al., 2009) from macroplastic, >5 mm into 54 

microplastics<5mm  that has increased conspicuously (Thompson et al., 2004, 2009) in the 55 

aquatic environment. Several authors reported the ability of microplastics particles to adsorbed 56 

and absorbed hydrophobic endocrine disrupting chemicals (HEDCs) at a several magnitude 57 

higher than their surrounding water (Rochman et al., 2013; Velzeboer et al., 2014).  58 

Plastic waste materials and hydrophobic endocrine disruption chemicals  has been reported by 59 

Vethaak and Leslie (2016) to form multifaceted mixture of contaminants in the aquatic 60 

environment that increase the availability HEDCs to be readily bioavailability to wide variety of 61 

aquatic faunas and eventually to humans in contrast to other naturally sorbent (Bakir et al., 2016; 62 

Koelmans et al., 2016). Hydrophobic endocrine disrupting chemicals like polychlorinated 63 

biphenyls (Mato et al., 2001, Bakir et al., 2012, 2014) and polycyclic aromatic hydrocarbons 64 

(Rochman et al., 2013) are known to adsorb on microplastic surfaces (Teuten et al., 2009). 65 

Presently, there is increasing concern that aquatic fauna declines in population and increasing 66 

occurrence of endocrine-related syndrome in aquatic organisms are connected to chemicals 67 

compound adsorbed on plastic waste materials (Bergman et al., 2013). These chemicals 68 

compounds include but not limited to polychlorinated biphenyl (PCBs), organochlorine 69 

pesticides (OCPs) and polycyclic aromatic hydrocarbon (PAHs). Most of these pollutants are 70 

well known hydrophobic persistent organic pollutants that are constrained in most countries 71 

Nigeria inclusive may interfering with the endocrine system as reported by (Bergman et al., 72 

2013). Some HEDCs are known to cause effects at the present levels found in biota and the 73 

environment (Vethaak and  Legler, 2012; Bergman et al., 2013). However, the absorption ability 74 



 

 

of micropellet particles of hydrophobic endocrine disrupting chemicals has not been sufficiently 75 

studied. Hence, this study is aimed at evaluating the associated hydrophobic endocrine disrupting 76 

chemicals in micropellet particles extracted from surface water and sediment of Lagos lagoon. 77 

 78 

2.0 MATERIALS AND METHODS  79 

2.1. Description of sampling area 80 

The study was carried out in one of the biggest estuary in Nigeria Lagos lagoon is located 81 

between longitude 3°23" and 3°53" and latitude 6°26" and 6°37"N. The lagoon empties into the 82 

Atlantic Ocean through the Lagos harbour, an important channel through the heart of Lagos. 83 

Within the Lagos lagoon eight (8) sampling stations were established based on solid waste 84 

characteristics of each of the sampling area as reported by past literature (Abiodun and Oyeleke, 85 

2016) (Figure 1 and Table 1).  In each of the sampling stations three (3) points were selected to 86 

represent the true conditions of the sampling locations (Figure 1) with different wastes littering 87 

the surface of the water.  88 



 

 

 89 

Figure1:  Map of the Sampled Study Area 90 

 91 

 92 

 93 

 94 

 95 

2.2  Sample Collection Methods 96 

- Microplastic Samples  97 

The surface water was collected by means of manta trawl net with a circular opening of 15cm by 98 

45cm wide with iron frame, 60 cm length 1.62mm mesh net with 20X 5 collecting bottle was 99 

towed behind a speed boat for 30 minutes at each site to sampled microplastic by tow speeds 100 

below 3 knots, while speed boat maintains a consistent heading. At each sample site, a target tow 101 

length of 500 to 2000 m was established with length based upon the amount of floating debris 102 

and waste samples captured at the base of the net end was placed in a clean pre labelled glass 103 



 

 

sample bottle. To avoid contaminating samples, the manta net and collection vessel were rinsed 104 

methodically (Eriksen et al., 2013). Sediment sampled for the analysis of micropellet particles 105 

were collected with a Van veen grab sampler (0.1m2) in areas of low flow velocity (<0.3m/s) in 106 

each of the stations. Thereafter, sediment was gently stirred and carefully sieved through a 107 

0.5mm mesh sieve. The content of the sieve after washing was transferred into a pre-labelled 108 

container and 10% formalin was added and transfer to the laboratory for further analysis. 109 

 110 

2.3 Extraction of microplastics 111 

The method of extraction employed involved filtration of solids wastes obtained in manta trawl 112 

net surface sampling and sediment sampled while plastic waste materials of appropriate size 113 

were isolated. The sieved plastic waste materials were air dried under the fume hood to 114 

determine the mass in the microplastics sampled. The micropellet particles extracted were 115 

subjected to wet peroxide oxidation (WPO) in the presence of a Fe (II) catalyst to absorbed 116 

organic matter and sediment attached to the plastic waste. In addition the floating plastics were 117 

further isolated from the denser undigested mineral components with a density separator using a 118 

custom 0.45mm filter, air-dried, and plastic material were removed and weighed to determine the 119 

microplastics concentration (Free et al., 2014; Masura et al.,, 2015). 120 

Table 1: Description of sampling stations and solid waste characterization 121 

Station Name  Sampling points Solid waste characterization 
Oworonshoki (ST 1) LL1 Plastic litters, glass, paper, domestic 

organics, cloths, and human waste.  LL2 
LL3 

AbuleEledu (ST 2) LL4 Plastic litters, glass, paper, domestic 
organics, human waste, and wood 
logs.  

LL5 
LL6 

Makoko(ST 3) LL7 Plastic litters, glass, paper, domestic 
organics, human waste, cloths and 
wood log 

LL8 
LL9 



 

 

Okobaba (ST 4) LL10 Sawdust waste, wood log, plastic 
waste, organic wastes and human 
waste 

LL11 
LL12 

Iddo (ST 5) LL13 solid waste dump,  cement bag 
washing,  and rubber waste LL14 

LL15 
Marina (ST 6) LL16 plastics, glass, paper, vegetable waste, 

human waste LL17 
LL18 

Apapa Port (ST 7) LL19 Oil and grease, spillages, ship garbage 
and plastic debris LL20 

LL21 
Commandor channel (ST 8) LL22 Marine litters  

LL23 
LL24 

 122 

2.4 Test chemicals 123 

Analytical grade solvents hexane and dichloromethane were purchased from Sigma Aldrich. 124 

Standards of PCBs, and PAHs were purchased from Accustandard (New Haven, CT, USA). PCB 125 

65 and PAHs mixture Z-014J-0.5X (Naphthalene -d8, acenapthene-d10, phenathrene-d10, 126 

chrsyene-d12 and perylene-d12) and CLP-LC-SS1 (Nitrobenzene-d5, 1-1’-biphenyl 2-fluroene-127 

d10 and ptertphenyl-d14) were purchased from Accustandard. These standards were diluted with 128 

analytical grade hexane to make calibration, internal, and recovery standards. 129 

2.5 Solvent Extraction Procedure 130 

Micropellet particles were extracted for determination of contents of PCBs and PAHs. 131 

Approximately 1 g of micropellets was used for extraction, Samples were placed in labelled 132 

amber glass bottle and matrix blanks were used as controls. Matrix blank consisted of virgin 133 

polyethylene pellets that were not exposed to environmental factors outside of production. About 134 

0.3 g of sodium sulphate was added to each amber bottle in order to remove any moisture present 135 

in each sample. Each sample was then spiked with known amounts of internal standards. N-136 

Hexane was added to each sample in equal amounts of 30ml and shaker for 30 minutes using a 137 



 

 

mechanical shaker (Fisher Scientific, Fair Lawn, NJ, USA). The extraction procedure was then 138 

repeated a three time (3x) with 15ml of hexane were added to the same  amber bottle Extracted 139 

samples were then placed in a round bottom flask and attached to rotary evaporator and 140 

concentrated to about 2 ml at 40°C.  141 

 142 

2.6  Silica gel- solid Phase Extraction (SPE) 143 

Silica gel based SPE cartridges, Sep-Pak, from (Waters, Milford, MA, USA) and glass syringes 144 

were assembled on a Visiprep SPE vacuum (Supelco, Bellefonte, PA, USA). After thorough 145 

cleaning and conditioning of SPEs, each extract was loaded into SPE and fractionized with 10 ml 146 

of hexane and 10 ml dichloromethane (7:3). Flow rate of solvent through SPEs was carefully 147 

monitored at this time. The two fractions were combined and concentrated by the TurboVap, 148 

transferred to 2 ml amber vials.  149 

 2.7 Identification and Quantification of PCB Congeners and PAHs derivative  150 

Identification and quantification of  28 PCB congeners (congeners (PCB 8, PCB18, PCB 28, 151 

PCB 44, PCB 52, PCB 60, PCB 77, PCB 101, PCB 81, PCB 105, PCB 114, PCB 118, PCB 123, 152 

PCB 126, PCB 128, PCB 138, PCB 153, PCB 156, PCB 157, PCB 167, PCB 169, PCB 170, 153 

PCB 180, PCB 185, PCB 189, PCB 195, PCB 206 and PCB 209) was performed with a gas 154 

chromatograph (GC)-electron capture detector (ECD) (Agilent 7890A GC- (ECD Detector) 155 

using USEPA Method 608. sixteen(16)PAHs (naphthlaene (NAP), acenaphthylene (ACY), 156 

acenaphthene (ACE), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene 157 

(FLT), pyrene (PYR), benzo[a]anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), 158 

benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), benzo[ghi]perylene (BghiP), 159 

dibenzo[a,h]anthracene (DahA), indeno[1,2,3-cd]pyrene (IND)). Analysis was conducted 160 



 

 

utilizing Agilent Gas Chromatography (GC-7890A) coupled with Flame ionization Detector 161 

(FID) Column: HP5 (30m x 320um x 0.25um) along with internal and recovery standards. 162 

 163 

2.8 Quality Assurance  164 

All glassware was thoroughly cleaned and baked in the oven at 140°C for thirty minutes 165 

(30mins) and glass syringes at 45°C for one hour. During the extraction procedures, samples 166 

were all carefully covered with aluminium foil in order to prevent contamination. All glass 167 

pipettes, test tubes, and vials were discarded after single usage.  168 

 169 

2.9 DATA ANALYSIS 170 

Analysis of results was completed by using the sum totals of 28 PCBs and 16 PAHs. One way 171 

Analysis of variance (ANOVA) with Pos –Hoc Duncan multiple range test was conducted 172 

coupled with descriptive analysis  means and standard deviations) from the sums of each EDCs 173 

compound analyzed.  Data was sorted micropellets extracted from surface water and sediment 174 

according to sampling locations.  175 

3.0  RESULTS 176 

3.1. Micropellet particles occurrence and distribution among the sampled environmental 177 

matrices  178 

The occurrence of micropellets sampled within the environmental matrices indicates pellet 179 

particles occurs more in surface water than sediment. Almost all of the plastic micropellet 180 

particles (91.6%) were round in shape, with only 8.4% non-cylindrical in shape; maximum 181 

occurrence in surface water (67%) and (33%) in sediment sampled (Figure. 2). Most common 182 

colour in all size class of micropellet particles extracted in surface water and sediment in  all the 183 



 

 

sampling stations was white (46.97) and opaque in sediment (53.03) (Figure 3). Majority 184 

(63.20%) fell between 2–3mm size classes in surface water while 26.8 % size class in sediment 185 

was between 1-2mm.  The highest mean occurrence concentration of micropellet particles was 186 

observed in surface water samples from the marina axis at sampling point LL16 (4692 187 

micropellets particles/L), followed closely by samples collected at Commodore channel at 188 

sampling points LL22 (4165 Micropellets particles/L) and the  lowest occurrence is observed at 189 

Makoko station at sampling point LL7 ( figure 4).  190 

 191 

 192 

 193 

 194 

Figure 2: Distribution of micropellet particles in environmental matrices 195 
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 196 

Figure 3: Percentage of plastic micropellet particles with each colour in each size class from each 197 

environmental matrix. 198 
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 200 

Figure 4: percentage occurrences of micropellet particles in each sampling points 201 

 202 

3.2 EDCs contents in extracted pellet particles from surface water and sediment 203 

All micropellets samples contained detectable amount of persistent organic EDCs (figure 5-10), 204 

demonstrating the ubiquitous nature of these contaminants.  Inter-stations differences in the 205 

concentrations of individual EDCs were apparent in all the sampling stations.  206 

 207 

3.2.1  PCBs in Micropellet particles extracted from surface water and sediments 208 

 The ΣPCBs concentration varied between 76 and 1043 ng g–1, which was significantly P (< 0.01 209 

and 0.05) higher in the surface water than in sediment (Figure 5). The maximum ΣPCBs 210 

concentration was found at ST 5 from micropellet particles extracted from surface water while 211 
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the highest notably concentration of PCBs in micropellet particles extracted from sediment was 212 

detected in  ST 8 (873 ng g–1), with two to three orders of magnitude higher than that recorded 213 

for some of the other stations. In respect of sampled matrices PCB 52 and PCB 77 are the most 214 

abundance in surface water and sediment while PCB 195 was relatively low in the pellet 215 

particles extracted from surface water and sediment (Figure 6 and 7) 216 

 217 

 218 

 219 

. 220 



 

 

 221 

Figure 5: Mean concentrations of ΣPCBs (28 congeners) in microplastics (ng g–1) in Surface 222 

water and sediments.  223 

Means and standard deviations of three replicates are shown; bars with different letters (a,b,c,d) 224 

indicated mean differences among sampling stations according to one-way ANOVA and post-225 

hoc Duncan multiple range test; single asterisks (*) indicates p < 0.05 and double asterisks (**) 226 

indicated p < 0.01 significant difference between sampling station and environmental matrices  227 
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 231 

Figure 6: Mean concentrations of ΣPCBs (28 congeners) extracted from micropellets in surface 232 

water  233 
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 235 

Figure 7: Mean concentrations of ΣPCBs (28 congeners) extracted from micropellets in sediment  236 

 237 

 238 

3.2.2 PAHs in Micropellet particles  extracted from Surface water and sediments 239 

The total PAHs concentration ranged between 46.05 ng g–1 (ST1) and 3984.04ng g–1 (ST 6) 240 

within micropellet particles extracted in the environmental matrices (Figure 8). When individual 241 

station were compared in regards to the environmental matrices, all the stations have PAHs types 242 

three 5–6 rings PAHs .On the other hand, sites ST1 and ST6 were greatly affected by 2–5rings 243 

PAH. Regardless of stations, 3–4 rings PAH dominated in this study (Figure 9 and 10). The PAH 244 

diagnostic ratios (Figure8) indicated PAHs that varied among Stations as well as within the 245 
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environmental matrices). The related distribution pattern for EDCs displayed in ST 7 and ST 6; 246 

contamination of PAHs could be an indication that local contamination sources probably would 247 

have contributed to such difference observed across the sampling station. 248 

 249 

 250 

Figure 8: The concentrations of HEDCs in micropellet (ng g–1) of ΣPAHs (16 congeners).  251 

Means and standard deviations of three replicates are shown; bars with different letters (a,b,c,d) 252 

indicated mean differences among sampling stations according to one-way ANOVA and post-253 

hoc Duncan multiple range test; single asterisks (*) indicates p < 0.05 and double asterisks (**) 254 

indicated p < 0.01 significant difference between sampling station and environmental matrices  255 
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 258 

Figure 9: The concentrations of ΣPAHs (16 congeners) extracted from micropellets in surface 259 

water  260 
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 262 

Figure 10: The concentrations of ΣPAHs (16 congeners) extracted from micropellets in sediment  263 

 264 

4. Discussion 265 
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This study evaluates micropellet particle occurrence and distribution in (surface water and 267 

sediment) and their associated hydrophobic endocrine disrupting chemicals in the extracted 268 

micropellet sampled.  In the present study, the micropellet particles collected were higher in 269 

surface water than sediment were mostly opaque and white, a finding in agreement with other 270 

studies that have reported that most micropellet found in environmental matrices are often white 271 

or opaque (Heo et al., 2013; Corcoran, 2015;Veerasingam et al., 2016). This finding is not 272 

surprising because white micropellet particles are the most common colour manufactured 273 

(Redford et al., 1997) worldwide. However, one author have recorded frequency of yellow 274 
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micropellet  (Karapanagioti and Klontza, 2007) and according Veerasingam et al. (2016) they 275 

are the second most frequently observed micropellet particles often associated with micropellet 276 

particles in environmental matrices, a results that was not established in this present study. 277 

Although, the difference observed probably may be due to difficulties in colour definition by 278 

those researchers counting opaque micropellet particles as “yellow” whereas in the present study 279 

they were counted as opaque colour. According to Wright et al. (2013), white color composition 280 

of micropellet particles are similar in colour to most plankton organisms, a primary food source 281 

for  most aquatic  organisms dwelling in the pelagic zone. The occurrence of micropellets 282 

particles within the marine environment is currently well recognized in the water column, at the 283 

sea surface and sediments (Law and Thompson, 2014). It has been documented that micropellet 284 

particles also accounted for about 10% of all reports of ingestion of aquatic debris, highlighting 285 

their importance as a component of aquatic debris (Gall and Thompson, 2015). The size of 286 

micropellet particles makes them accessible to organisms with a range of feeding methods, 287 

including: filter feeders (mussels, barnacles), deposit feeders (lugworms) and detritivores 288 

(amphipods, sea cucumbers) and zooplankton (Wright, et al., 2013). Due to diversities in their 289 

size, a substantial proportion could possibly be discharged into creek, river, estuaries and the 290 

oceans. Micropellet particles have been reported to generally concentrated in the areas of nutrient 291 

upwelling (Doyle et al., 2011), which possibly accounted for the significant numbers detected 292 

around solid waste litter and probably influenced by local weather condition systems (Moore et 293 

al., 2002; Lattin et al., 2004; Reisser et al. 2013).  PCBs were the most frequently encountered 294 

organic contaminant, and total PCBs on micropellet particles were higher and varied according 295 

to geographical location and frequency of pellets occurrence (Rochman, 2015; Fotopoulou and 296 

Karapanagioti, 2017), nevertheless,  PAHs concentrations in micropellet particles obtained in 297 



 

 

this study were generally lower than the values reported elsewhere. Some authors reported high 298 

concentrations of priority PAHs contamination in micropellet particles collected in coastal region 299 

(Ziccardi et al., 2016; Ivleva, et al., 2017;Mendoza, et al., 2016).  Sixteen priority PAHs 300 

concentration was detected in the floating marine plastic debris collected from Northern Pacific 301 

Gyre varied between undetected and 14459 ng g–1 (Rios et al., 2010). When compared with the 302 

concentrations found in marine environment in previous studies, much higher concentrations of 303 

PAHs were obtained in micropellet in this study.  304 

Differences in PAHs level across the sampling stations were apparent, even for stations very 305 

close to each other. This probably indicated that there is possibility of input PAHs at 306 

preproduction of plastic pellets. The presence of EDCs in the environment may have ecological 307 

and health consequences not only for aquatic fauna but also for humans, as EDCs can enter the 308 

food chain and bioaccumulates. The range of values of polycyclic aromatic hydrocarbons and 309 

polychlorinated biphenyl studied confirmed large fluctuations within the period of study possibly 310 

influenced by anthropogenic activities. This study corroborated with the reports of previous 311 

authors (Nubi, et al., 2010; Amaeze, and Abel-Obi, 2015; Abiodun and Oyeleke, 2016;  Soneye, 312 

et al., 2018) in South-West Nigeria that plastic waste materials litter the Lagos Lagoon 313 

environment. Furthermore, a potential problem associated with micropellet particles 314 

contamination is the likelihood of transport of endocrine disrupting chemicals contaminants by 315 

plastic waste particles which have been established in this study to adsorbs onto surface of 316 

plastic waste materials and may transfer to biota upon ingestion as reported by many authors 317 

(Teuten et al., 2009;Devriese et al., 2015; Koelmans et al., 2016;Suaria et al., 2016). 318 

Conclusion  319 



 

 

The present study showed that micropellet particles are present in environmental matrices with 320 

differential affinities for sorption of endocrine disrupting chemicals that may alters the hormonal 321 

behavioural and physiology of aquatic fauna if injected are likely to threat aquatic resource. This 322 

calls for urgent monitoring of Lagos lagoon (where plastics products are abundantly 323 

manufactured and used with reckless abandon) and other coastal region in Nigeria in order to 324 

mitigate the danger of plastic waste materials in our coastal bodies. 325 

 326 
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