
British Journal of Mathematics & Computer Science
X(X): XX-XX, 20XX

SCIENCEDOMAIN international
www.sciencedomain.org

An epidemic model of malware virus with quarantine

Aprillya Lanz∗1,2, Daija Rogers1 and T.L. Alford2

1Grand Canyon University
Phoenix, AZ 85017, USA

2School of Engineering for Matter, Technology and Energy,
Arizona State University,
Tempe, AZ 85287, USA

Original Research
Article

Received: XX December 20XX
Accepted: XX December 20XX

Online Ready: XX December 20XX

Abstract
In March of 2018, about 500,000 desktop computers were infected with cryptocurrency mining
malware in less than 24 hours. In addition to attacking desktop computers, malware also attacks
laptops, tablets, mobile phones. That is, any device connected via the Internet, or a network is
at risk of being attacked. In recent years, mobile phones have become extremely popular that
places them as a big target of malware infections. In this study, the effectiveness of treatment for
infected mobile devices is examined using compartmental modeling. Many studies have considered
malware infections which also include treatment effectiveness. However, in this study we examine
the treatment effectiveness of mobile devices based on the type of malware infections accrued
(hostile or malicious malware). This model considers six classes of mobile devices based on their
epidemiological status: susceptible, exposed, infected by hostile malware, infected by malicious
malware, quarantined, and recovered. The malware reproduction number, Rw, was identified to
discover the threshold values for the dynamics of malware infections to become both prevalent
or absent among mobile devices. Numerical simulations of the model give insights of various
strategies that can be implemented to control malware epidemic in a mobile network.

Keywords: epidemiology, malware, computer virus, reproductive generation number
2010 Mathematics Subject Classification: 92D30, 92Bxx, 35A24

1 Introduction
From the transfer of funds to or from one’s financial institutions, utilities provider, home-security
devices, and devices in the home, the proliferation in the use of mobile applications has enabled
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and enhanced everyday life across the globe. This has also spurred the rapid evolution of malicious
software (or malware) that range from pop-up advertisements to vicious encroachment of individual’s,
businesses’ and government’s cyber security systems (Weinberger (2011); Gan et al. (2013); Yang
and Yang (2014); Yang et al. (2013)). The Merriam-Webster defines malware as a software designed
to interfere with a computer’s normal functioning. As the capabilities and use of mobile application
use increase, the risk for breach of cyber security systems increases as well.

In March of 2018, about 500,000 desktop computers were infected with a malicious cryptocurrency
mining software in less than 24 hours (Liu and Zhong (2017)). In addition to attacking desktop
computers, malware also attacks laptops, tablets, mobile phones. This act reveals the financial
incentive that drives the development of a new generation malware for the encroachment host-sites
or devices through susceptible webpages. Once in the host-site or device, the malicious software and
deceptively gleans confidential information. The consequence can result in compromised passwords,
browsing history, financial information, and etc.

In recent years, mobile phones have become extremely popular; thus, making them primary
targets of malware attacks. Hence, there is ever growing necessity to understand how the malware
infections propagates through the web, especially through social media. For example, Facebook is
the common venue for encroachment vectors and followed by spam links on social media websites
(Marchal et al. (2014)).

Given the common characteristic spread of biological viruses and computer viruses, malware
epidemiology used the mathematical techniques developed in the epidemiology of infectious diseases
to describe the encroachment and propagation of malware viruses. Earlier models described the
use of electronic mails or removable storage devices as vectors that allow malware to encroach
computer systems and execute malicious act. (Yang and Yang (2012); Mishra and Jha (2010)).
Many of these earlier mathematical models were achieved using a compartmental approach (such
as SIRS, SIRA, SEIQR, etc.) (Batistela and Piqueira (2018); Chen et al. (2015); Gan et al. (2014,
2013); Gan and Tan (2010); Hu et al. (2015); Piqueira et al. (2008, 2005); Ren et al. (2012, 2017);
Upadhyay et al. (2017); Yang and Yang (2015); Yang et al. (2016, 2013); Zhang and Yang (2015); Zhu
et al. (2012)) . Many of these models were able to describe migration of the viruses and treatment
effects; however, they did not consider the inclusion of isolation period of those objects penetrated by
malware (Liu and Zhong (2017)).

In this paper, we propose a malware transmission model in a network of mobile devices by
considering the treatment effectiveness based on the type of malware infections accrued (hostile
malware or malicious malware). The proposed model considers six classes of mobile devices based
on their epidemiological status: susceptible, exposed, infected by hostile malware, infected by malicious
malware, quarantined, and recovered. Quarantine in this case implies an isolation of the device from
the network while going through a treatment process to remove the malware. It is also assumed
that once the malware is removed, mobile devices employ temporary immunity which allow them to
become susceptible again to the infection.

2 Model formulation
In this model, we consider the population as a network of mobile devices. The total population is
divided into six classes: susceptible S(t), exposed E(t), devices containing hostile malware I1(t),
devices containing malicious malware I2(t), devices in quarantine Q(t), and devices recovered from
malware R(t). Thus, the total population at a given time t is

N(t) = S(t) + E(t) + I1(t) + I2(t) +Q(t) +R(t).

It is assume that the incoming rate of new mobile devices is constant and denoted by Λ. Mobile
devices will be exposed to malware virus by effective contacts via electronic communications with
other devices containing malware virus. This effective contact rate is denoted by β; this is the rate
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where malware virus is successfully transmitted to a susceptible mobile device. The rates at which
mobile devices are infected with hostile malware and malicious malware are σ and γ, respectively. It
is assumed that mobile devices with hostile virus are recovered at a rate of ρ. It is also assumed that,
while in class I1 or I2, mobile devices may become nonfunctional at a rate of α. Some mobile devices
in I2 are quarantined at a rate of ν. The quarantine process may fail at a rate of η and these mobile
devices are assumed to return to I2 class at a rate of η. The successful quarantine will produced
recovered mobile devices at a rate of ψ. The model is described by the following system of equations

dS

dt
= Λ− βSλM + ωR− µS,

dE

dt
= βSλM −X1E,

dI1
dt

= σE −X2I1,

dI2
dt

= γE + ηQ−X3I2,

dQ

dt
= νI2 −X4Q,

dR

dt
= ρI1 + ψQ−X5R,

(2.1)

where

X1 = σ + γ + µ, X2 = ρ+ α+ µ,

X3 = ν + α+ µ, X4 = η + ψ + µ,

X5 = ω + µ.

In system (2.1), λM is the force of infection and is defined by,

λM =
ξI1 + I2
N

,

where ξ is the relative infection ability of hostile virus when compared to malicious virus. The values
of ξ ranges from 0 to 1.

The system of nonlinear differential equations model (2.1) is represented by

3 Model Analysis

3.1 Basic properties
It is assumed that all parameters and variables are greater than zero so that,

S(0) = S0 > 0, I1(0) = I01 > 0, Q(0) = Q0 > 0,

E(0) = E0 > 0, I2(0) = I02 > 0, R(0) = R0 > 0.

It should be noted that
dN

dt
= Λ− α(I1 + I2)− µN < Λ− µN.

Thus, N(t) < N(0)e−µt + (Λ/µ)(1− e−µt) and supt→∞ N(t) ≤ Λ/µ. We can then study the system
(2.1) in the feasible region

D =

{
(S(t), E(t), I1(t), I2(t), Q(t), R(t)) ∈ R6

+ | 0 ≤ N(t) ≤ Λ

µ

}
.
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Figure 1: Systematic diagram of the malware transmission.

The region D is positively invariant with respect to system (2.1) and all solutions of system (2.1) with(
S0, E0, I01 , I

0
2 , Q

0, R0
)
∈ R6

+ remain in D for all t > 0.

3.2 Model equilibria and stability analysis

3.2.1 Local stability of malware-free equilibrium

The malware free equilibrium (MFE) of system (2.1) is a state where there is no malware virus
present in the network and is represented by the point

M 0 : (S0, E0, I01 , I
0
2 , Q

0, R0) =

(
Λ

µ
, 0, 0, 0, 0, 0

)
.

The linear stability of M 0 can be determined following a method by van den Driessche and
Watmough [Driessche (2002)]. Using the next generation operator method (NGO), we employ the
next generation matrices, F and V , where F is the Jacobian of the malware-generating terms and V
is the Jacobian of the remaining transition terms. Both F and V are evaluated at the MFE, M 0,

F =


0 βξ β 0
0 0 0 0
0 0 0 0
0 0 0 0

 , V =


X1 0 0 0
−σ X2 0 0
−γ 0 X3 −η
0 0 −ν X4

 .
Local stability of MFE, based on NGO, is determined by whether ρ(FV −1) < 1. Here, ρ(FV −1)

is the spectral radius of the matrix FV −1. MFE is locally asymptotically stable given that the linearized
version of system (2.1) have eigenvalues with negative real parts.

We define the malware reproduction number RM = ρ(FV −1). Then,

RM = βξ · σ
X1
· 1

X2
+ β · γ

X1
· X4

X3X4 − ην
.

It is noted that RM is locally asymptotically stable whenever RM < 1 and unstable when RM > 1.
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3.2.2 Interpretation of reproduction number

The system’s malware reproduction number, RM , calculates the expected number of new malware
infected mobile devices generated by an infected mobile device in a completely susceptible network
during its duration of infection. The expression of RM for system (2.1) consists of two terms. The
first term represents the malware infections by hostile malware in class I1 and the second term by
malicious malware in class I2.

3.2.3 Stability of Malware-Free Equilibrium

The global stability of MFE is established in the following theorem.

Theorem 3.1. The MFE of the system (2.1) given by M 0 is globally asymptotically stable in D if
RM < 1.

Proof. Consider the Lyapunov function

V = aE + bI1 + cI2 + dQ,

where

a = (X3X4 − ην)X2,

b = βξ(X3X4 − ην),

c = βX2X4,

d = βηX2.

Taking the derivative of V with respect to time, t, yields
dV

dt
= (X3X4 − ην)X2(βSλM −X1E) + βξ(X3X4 − ην)(σE −X2I1)

+ βX2X4(γE + ηQ−X3I2) + βηX2(νI2 −X5Q),

≤ {(X3X4 − ην)(βξσ −X1X2) + βγX2X4}E,
= X1X2(X3X4 − ην)(RM − 1)E.

Thus, dV
dt
< 0, when RM < 1, and dV

dt
= 0, when E(t) = 0. By the LaSalle’s Invariant Principle [Hale

(1969)], every solution of (2.1) with initial conditions in D approaches M 0 as t→∞.

3.2.4 Existence of Malware-Presistent Equilibrium

The malware-persistent equilibrium (MPE) is identified by setting the equations in (2.1) to zero.
MPE is represented by

M ∗∗ : (S∗∗, E∗∗, I∗∗1 , I∗∗2 , Q∗∗, R∗∗).

We identify

λ∗M =
ξI1 + I2
N

(3.1)

as the force of infection at the steady state M ∗∗. The elements of M ∗∗ are solved in terms of I1 as
follows,

S∗∗ =
X1X2

βσλ∗M
I∗∗1 , E∗∗ =

X2

σ
I∗∗1 ,

I∗∗2 =
γX2X4

σ(X3X4 − ην)
I∗∗1 , Q∗∗ =

νγX2

σ(X3X4 − ην)
I∗∗1 ,

R∗∗ =
ρσ(X3X4 − ην) + ψνγX2

X5(X3X4 − ην)
I∗∗1 .

(3.2)
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Substituting (3.2) into (3.1) with some algebraic manipulation, we obtain the following quadratic
polynomial in terms of λ∗M ,

λ∗M (a1λ
∗
M + a0) = 0,

where

a1 = β [(X3X4 − ην)(X2X5 + σX5 + ρσ) + γX2(X4X5 + νX5 + ψν)] ,

a0 = X1X2X5(X3X4 − ην)(1−RM ).

Thus, the polynomial yields λ∗M = 0, which is the malware-free equilibrium, and λ∗M = −a0/a1, which
gives a unique malware-persistent equilibrium when RM > 1.

4 Numerical Analysis and Results
Several numerical simulations were performed using MATLAB 2019A to illustrate the dynamics of
the hostile and malicious malware virus in a mobile network. The parameter values used in the
simulations were estimated and listed in table 1. We assessed the effects of the duration of being
exposed to a virus and being quarantined.

Table 1: Description of parameters and estimated values

Parameter Description Estimated value

Λ Recruitment rate 350
β Effective contact rate 0.085
ξ Relative infectious factor of hostile malware 0.8
σ Infected rate of hostile malware 0.083
γ Infected rate of malicious malware 0.05
ρ Recovery rate from hostile malware 0.038
α Malware-related exit rate 0.001
ν Isolation rate from malicious malware 0.083
η Re-infection rate from isolation 0.00083
ψ Recovery rate from isolation 0.017
ω Temporary immunity rate 0.00069
µ Non-malware related exit rate 0.000057

Figures (2) show the trajectories of the number of infected mobile devices when the parameter
values reflect RM < 1 and RM > 1 with various initial conditions. These simulations show that
when RM < 1, the number of infected mobile devices reaches the malware-free equilibrium, while
when RM > 1, there exists a non-zero malware-persistent equilibrium. Furthermore, increasing the
number of mobile devices exposed to malware virus reduces the time when the epidemic occurs.

Figure (3) shows the trajectories of the number of infected mobile devices when RM > 1 with
varying σ, the infected rate of hostile malware, and γ, the infected rate of malicious malware. As
σ decreases, RM decreases. Figure (3a) shows as σ decreases, the peak of the trajectory also
decreases. It also shows that decreasing σ delays the occurrence of the epidemic. In Figure (3b),
the peak of the trajectory decreases as σ increases.

Figure (4) shows the trajectories of the number of infected mobile devices when RM > 1 with
varying ω, the temporary immunity rate from the recovered class, and ψ, the recovery rate from
the isolation class. The trajectories in Figure (4a) show a decreasing pattern of the peaks when ω
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Figure 2: Trajectories of infected classes for (a) RM < 1 and (b) RM > 1 with various initial conditions.
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(a) Varying σ.
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(b) Varying γ.

Figure 3: Trajectories of infected classes when RM > 1 with (a) varying σ and (b) varying γ.

increases. Figure (4a) also shows a noticeable delay in the epidemic as ω increases. Lastly, as ψ
increases in Figure (4b), the peaks of the epidemic also increases.

5 CONCLUSIONS
In this study, we investigated the transmission dynamics of malware virus in a network of mobile
devices. Within this dynamics, we considered classifying malware virus types as hostile and malicious.
We also considered the isolation of mobile devices infected with malicious malware in a quarantine.
We demonstrated the existence of malware-free equilibrium and malware-persistent equilibrium both
analytically and numerically. Furthermore, we obtained the malware reproduction number, RM , which
determines the threshold value of the epidemic.

The numerical simulations of the system (2.1) show how the parameter values affect the occurrence
of the malware epidemic. As σ increases, the malware reproduction number, RM , also increases.
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(a) Varying ω.
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(b) Varying ψ.

Figure 4: Trajectories of infected classes when RM > 1 with (a) varying ω and (b) varying ψ.

Table 2: Summary of simulation results

Parameter Note(increasing)

σ epidemic peak increases, multiple endemic peaks occur
γ epidemic peak decreases, multiple endemic peaks disappear
ω epidemic peak increases, multiple endemic peaks disappear
ψ epidemic peak increases, multiple endemic peaks occur

The trajectories in (3a) show a shorter period of epidemic as RM increases. Interestingly, as γ
increases, RM , decreases. The largest value of RM used in the simulation generates the trajectory
with the highest peak in Figure (3b). When ω increases, there is a threshold where a cycle of epidemic
occurs generating more malware infections in the network. In Figure (4a), the trajectory with the
largest RM appears on the bottom, showing multiple epidemic peaks. Finally, in Figure (4b), the
trajectories show a pattern that as ψ increases, RM decreases, resulting in increasing peaks.

From the different simulations with varying parameter values, we observe their effects on RM .
Numerous strategies can be implemented in order to prevent or control a malware epidemic. For
example, longer duration in isolation for those mobile devices infected with malicious malware helps
minimize the duration time of the epidemic.
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