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                                                                                              ABSTRACT 

This study is designed to investigate the effect of Hartmann number on transient 
period, Joule heating and viscous dissipation in an incompressible MHD 
(Magneto-Hydrodynamics) flow over a flat plate moving at a constant velocity. 
The governing momentum equation is non-dimensionalized and solved by the 
Laplace transform technique. The solution is decomposed into transient part and 
steady state part and then the effect of Hartmann number on transient period 
concerning velocity and its two related quantities (Joule heating and viscous 
dissipation) is analyzed. It was found out that when Hartmann number is 
increased the transient period is shortened and it was the same for the three 
quantities. In addition, the steady state solutions for both Joule heating and 
viscous heating were found to be equal. Even though velocity decreases when 
the Hartmann number is increased, the opposite was discovered for both Joule 
heating and viscous heating. Graphical analysis indicated that transient period 
changes considerably if Hartmann number is between 0 and 2.  This study will 
find use in those industrial areas where magnetic fields are used to control liquid / 
molten metals in open channels. 

Keywords: MHD, Hartmann number, transient period, Joule and Viscous 

dissipation. 

NOMENCLATURE 

B          Magnetic field  )/( 2mWb  
D          viscous dissipation variable  

cE         Eckert number 

erfc      complementary error function 
erf         error function 
H          Hartmann number 
J           Joule heating variable 
MHD     Magneto-Hydrodynamics 
U          plate velocity  )/( sm  
 t           time parameter  )(s  
 u     x component of velocity )/( sm  
   v    y component of velocity )/( sm  

       kinematic viscosity     )/( 2 sm  

      density )/( 3mkg  

      electrical conductivity  )./( KmW  
                       
                          superscripts 
            dimensionless variable 
                        
                          subscripts 
          p      permanent 
           t      transient 
   



               

1. INTRODUCTION 

MHD flow concerns with the flow of electrically conducting fluids in the presence of 
magnetic fields. These type of flows where introduced by Hannes Alfven. This 
made him to win a Nobel prize in 1970.   

Research in MHD flow has attracted the attention of many researchers due to its 
numerous industrial and engineering applications. For instance, they find 
application in metal processing, metallurgical work, welding, MHD ship propulsion, 
EM pumps, flow meters and MHD flow conducting pumps among others. The 
description of these applications is found in Tillack and Morley (1998). Further, they 
find applications in geophysics, earthquake studies, astrophysics and cosmology 
and nuclear cooling. Magnetic drug targeting is another potential area of 
application. A discussion of these applications has been done in 
http:en.wikipedia.org/wiki/magnetohy-drodynamics. 
 
The literature pertaining unsteady and steady MHD flows is huge. The time after 
which an unsteady flow becomes steady is called transient period or time. This 
period is important especially in engineering application since it is used to 
determine or predict the time which must elapse in order for steady state conditions 
to be assumed. The current study therefore aims at investigating the effect of the 
Hartmann number on transient period of velocity and its related quantities; viscous 
dissipation and Joule heating. 

The effect of Hartmann number on MHD flow on various quantities of interest has 
been investigated by many researchers. Mamalonkas (2001) investigated, using the 
finite difference method MHD flow over an oscillating plane. The results indicated 
that Hartmann number reduces the fluid velocity but increases the fluid 
temperature. Makinde and Mhone (2005), analytically, studied the combined effect 
of transient magnetic field and radiation in a channel field with porous medium. It 
was discovered that magnetic strength intensity reduces wall shear stress. 
Chaudhary and Jain (2007) applied the Laplace transform technique to study the 
combined heat and mass transfer effects on MHD free convection flow past a plate. 
This study showed that skin friction increases with an increase in Hartmann number 
which is contrary to Makinde and Mhone (2005). Further it was demonstrated 
graphically that an increase in the Hartmann number increases the fluid 
temperature and decreases velocity. The effect of thermal conductivity on unsteady 
MHD flow over a semi-infinitive vertical plate research was conducted by 
Loganathan et al (2010). In this study, the method of Crank – Nicolson type was 
applied. It was observed that temperature increases with an increase in Hartmann 
number but skin friction decreases with an increase with Hartmann number. 
Unsteady MHD free convection flow past a vertical flat plate is done by Hamad and 
Rop (2011). The perturbation technique was used in this study. It was found that an 
increase in Hartmann number leads to an increase in skin friction as well as the 
temperature of the fluid. However, the velocity decreases due to the increased 
Lorentz force. The effects of thermal radiation and viscous dissipation on MHD heat 
were investigated by Kishore et al. (2012) using the explicitly finite difference 
method of Dufort – Frankel’s type. It was shown that an increase in Hartmann 
number increases the skin friction which is due to the enhanced Lorentz force. 



Many applications are given in this paper and a rich literature of transient flows is 
found therein. Ahmed and Kalita (2013) analytically and numerically using the 
Laplace transform technique and finite differences of the Crank-Nicolson method 
respectively analyzed MHD flow of an incompressible flow over a vertical oscillating 
plate in a porous medium in the presence of homogeneous chemical reaction. 
Through graphical presentation as well as tabular form, it was shown that velocity 
increases when magnetic parameter was increased. Recently, Abdulhameed et al. 
(2016) researched on transient MHD flow generated by periodic wall using the He’s 
homotopy perturbation technique method. Just like the previous authors, it was 
found that an increase in Hartmann number caused a decrease in velocity and an 
increase in temperature. Thankal (2017) studied unsteady MHD flow over porous 
stretching plate. Using similarity transformation, it was observed that an increase in 
Hartmann number increases the skin friction as well as heat transfer rate.  

The above literature review reveals the effect of Hartmann number on velocity, 
temperature, local skin friction as well as local rate of heat transfer. However, its 
effect on transient period of velocity, viscous and Joule dissipation is lacking. 
Further its effect on viscous dissipation and Joule heating has not been 
investigated. This study therefore intends to investigate its effects on transient 
period, viscous dissipation and Joule heating. We shall attempt to answer the 
questions: 

1) Does an increase in Hartmann number shorten or lengthen transient period 
of velocity, viscous dissipation and Joule heating? 

2) Is the time taken to reach steady state the same for velocity, viscous 
dissipation and Joule heating? 

3) Does an increase in Hartmann number lead to heating up of the fluid through 
viscous dissipation and Joule heating? 
 

2 MATHEMATICAL FORMULATION 

Consider an electrically conducting incompressible flow caused by a flat plate 
moving at a constant speed U. Further, let a magnetic field of strength B be applied 
perpendicularly to the plate immediately after the plate starts moving. Assume that 
y is the perpendicular distance away from the plate surface (see fig.1). Let the 
leading edge of the plate be at x = 0.  Assuming a no-slip condition, the governing 
equations are: 

 

 

Fig.1 Physical configuration 
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Subject to 

0u   at  0t  

                              Utu ,0  for  0t                                                              (2) 

                                0,  tu  for  0t  

In order to non-dimensionalize Eq. (1) and Eq. (2) we shall introduce the 
dimensionless variables: 
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In view of this, Eq. (1) and Eq. (2) reduces to Eq. (4) and Eq.(5) respectively. 
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Subject to 

00),(   tattyu  

1),0(  tu   at 00   tfory                               (5) 

00),(   tfortu  

For the purpose of clarity, the asterisk ( ) is dropped in the next sections. 

3.  METHOD OF SOLUTION 

Taking the Laplace transform of Eq. (4) and Eq. (5) yields 

                     

   syUHs
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sydU
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, 2                                                                    (6) 

Which should be solved subject to 

s
sU
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0),(  sU             for all        0t                                                                  (7)                   

The general solution of Eq. (6) is  

      )exp()exp(),( 22 HsyBHsyAsyU                                                     (8) 

Applying the boundary conditions as in Eq. (7) we find 
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Hence Eq. (8) reduces to  
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Inverting Eq. (9) yields 
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This can be expressed in terms of the error function as 
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The solution can be written as 

   tyutyutyu pt ,,),(   

whereby 
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Now as t ,  0tu  and   yHu p  exp . 

tu  is called the transient part of the solution and pu the steady state (permanent) 

part. It is worth noting that  yHexp  is the solution of the steady state momentum 

equation. That is Eq. (4) when 0



t

u
. 

 

4.   VISCOUS DISSIPATION 

The effect of viscous shear forces generate heat. This process is called viscous 
dissipation. The mathematical formula is 
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In the light of this study we have 
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),( tyD can be decomposed into a transient part ),( tyDt  and permanent part 

),( tyDP as follows 
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5. JOULE HEATING   

Joule heating is the process by which the flow of electric current through the MHD 
fluid produces heat and is expressed mathematically as  
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Here the transient part of the solution is 
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 and the permanent part is 
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6. RESULTS AND DISCUSSION 

In order to get a true picture of the effect of the Hartmann number (H) on transient 
period of various quantities we need to analyze the above solutions. The permanent 
solutions of both viscous heating and joule heating are obtained by letting t tend to 
infinity. Those effects of H on various quantities which could not be established by 
analysis of solutions were presented graphically. 
 
6.1 Analysis of solutions 

It can be seen from equation Eq. (12) that the time taken for velocity to transit from 
transient state to steady state decreases when  the Hartmann number ( H ) is 



increased. From Eq. (16)  we find that  0),( tyDt  as H . This indicates that it 

takes shorter time to reach steady state viscous dissipation. In other words, the 
bigger the Hartmann number the shorter the transient period. Equation (19) reveals 
that 0),( tyJ t  as H . This means that the bigger the Hartmann number the 

shorter the transient period.  

From Eq. (17) and Eq. (20) we find that as  

0t ,   )2exp(, 2 yHHtyDp   

 and 

  )2exp(, 2 yHHtyJ p   respectively. 

It therefore means that the steady state Joule heating and viscous heating are 
equal which is an interesting discovery. 

6.2 Graphical analysis  

             

Fig.2 (a) The effect of Hartmann number on Transient period 



 

Fig.2 (b) The effect of Hartmann number on Transient period 

Figure 2 (a) and Fig. 2(b) are graphs of transient period against Hartmann number 
H. Figure 2 (a) considers values of H between 0.1 and 1 and Fig. 2(b) those 
between 1 and 12. We can therefore take the second graph as a continuation of the 
first one. The graph drops sharply between H=0.1 and H=2. After which it drops 
gradually to almost zero at about H=10. This shows that a small change in H 
between 0.1 and 2 shortens the transient period significantly and a huge change in 
H above 2 causes an insignificant change of the same. Generally, the transient 
period decreases when H is increased. Further, the three curves coincide meaning 
that the steady state velocity, Joule heating and viscous dissipation are reached at 
the same time. 

Fig. 3 exhibits the effects of the Hartmann number on viscous dissipation. 
Obviously, as the Hartmann number is increased viscous dissipation increases. 
When the Hartmann number increases, the velocity decreases. This makes the 
relative velocity between the fluid and the moving plate huge. In turn the velocity 
gradient increases hence the increase in viscous heating. 

Fig. 4 displays the effect of the Hartmann number on Joule heating. It is observed 
that as the Hartmann number increases Joule heating increases. The big emf 
produced when Hartmann number is increased leads to a large current flow.  In turn 
more heat is dissipated. 



 

Fig. 3 the effect of Hartmann Number on viscous dissipation 

 

 Fig. 4 The effect of Hartmann Number on Joule dissipation 

 

7. CONCLUSION 

In this study, the Laplace transform technique has been used to solve the 
momentum equation of a MHD flow. An analysis of the solution has been done in 
order to investigate the effect of Hartmann number on transient period of velocity, 
viscous dissipation and Joule heating. Graphical representation has also been done 
in order to study the effect of Harmann number on viscous and Joule heating. 
Through this study we have found that 

 Transient period is shortened when Hartmann number is increased 



 Viscous and Joule heating are increased when the Hartmann number is 
increased. This means that more heat is added in the fluid when Hartmann 
number is increased 

 Velocity, viscous and Joule heating reach their steady state at the same time 
 The steady state solution for Joule Heating and Viscous dissipation is the 

same. 

This study reveals that an otherwise perpetually unsteady flow can be made steady 
by exposing the fluid to a weak magnetic field. 
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