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ABSTRACT 

 

In our universe, there is a presence of random bit of disorder in every field that has to be 

contemplated and understood clearly. This random bit of disorder in a physical system is known 

as noise. Noise in the field of statistics can be defined as an additional meaningless information 

that cannot be clearly interpreted which is present in the entire dataset. In large-scale statistics, 

noisy data has an adverse effect on the results and it can lead to skewness in any data analysis 

process, if not properly understood or handled. The adverse effect on the results is mainly due to 

uncorrelated (zero autocorrelation) property of noise. This makes it completely unpredictable at 

any given point in time, hence thorough investigation and removal of noise plays a vital role in 

data analysis process. In the field of engineering, measurement of experimental data obtained by 

using scientific instruments consists of some values that are independent of the experimental setup. 

One of most widely technique is the optimization methods viz, gradient descent, conjugate 

gradient, Newton’s method etc. Most of these methods require the determination of derivative of a 

function specified by the dataset (using finite-difference approximation). If the noisy data is 

approximated using a specific finite difference method this results in the amplification of noise 

present in the data. In order to overcome the aforementioned problem of amplification of noise in 

the derivative of a function, various regularization methods are employed. The parameter that plays 

a vital role in these methods are termed as regularization parameter. One of the most important 

technique used in the field of regularization is known as total variation regularization. This review 

aimed at gathering the disperse literature on the current state of various noises and their 

regularization methods. 

 

Key Words: Large-scale statistics; Noisy data; Regularization; Data driven methods; 

Amplification 
 

 

* Corresponding author - bapuavinash6@gmail.com; +49 176 72100929 
 

 

 

 

 

 

 

 

 

 

 

 

1 

mailto:bapuavinash6@gmail.com


2  

1. INTRODUCTION 

In the modern field of engineering, we deal with a lot of experimental data that may consists of 

errors. These errors possess the properties of randomness and non-correlation meaning that they 

are completely unpredictable in nature. Hence the knowledge behind these errors, proper handling 

and removal techniques are prioritized during the early phase of data analysis [1]. Various 

numerical method for approximating the derivative of functions like finite-difference methods have 

taken center stage in many engineering interdisciplinary for optimization purposes. Application of 

these finite-difference methods to the noise contaminated dataset leads to intensification of already 

present noise. These amplification in the derivatives can be suppressed by applying total variation 

(TV) regularization technique. TV deals directly with the process of differentiation. This process of 

regularization assures that the calculated derivative of the function adheres to a certain degree of 

regularity [2]. The successful implementation of this methods hinges on one aspect, i.e., clearly 

understanding and determination of regularization parameter. 

There are various methods that facilitates the determination of optimal regularization parameter 

One of the most important and widely used is the L-curve method. This method provides 

information on the regularization parameter based on the residual norm (L2) and the solution norm 

(L1) [3]. The graphical representation between the two for different regularization parameter 

provides an intersection point that stabilizes the effect of both the residual and the solution. This 

point is chosen as the optimal regularization parameter by using curvature plot [4]. 

A method that completely focuses on extensive analysis of residual vector is the normalized 

cumulative periodogram [5]. The selection of optimal regularization parameter is based on 

Kolmogorov-Smirnov test i.e., the cumulative periodogram must strictly lie within the confidence 

interval of 95% [6]. In these circumstances, the user is generally in a tough spot. Hence the 

generalized cross validation method is employed to overcome complexities of unknown exact data 

or the variance of noise [7]. 

These optimal parameters can then be used in the data-driven (sparse regression) method in order 

to determine the PDE of the governing equation. This method provides good ap- proximation of 

the system as this uses brute-force search and the sparse regression technique for sparse nonlinear 

time series matrix in order to achieve its goal [8]. With this background, an attempt has been made 

in this study to investigate the implications of noisy data in large scale statistics and regularization 

of noisy data in order to retrieve vital information. 

 

 
2. GENERAL CONSIDERATION 

Raw data collection, different types of noise present in a general system, processing and 

regularization are the important steps of this study. There are many regularization methods, few of 

the commonly used in the field of signal processing are: Ridge regression; Least Absolute 

Shrinkage and Selection Operator (LASSO) and Total Variation Regularization or Rudin–Osher– 

Fatemi model. The collected data must then be organized for future analysis. This process of 

organization of collected data is known as data processing. Example of data processing is the 
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placement of data into columns and rows with respective variable names in a statistical software 

(Microsoft® Excel or Minitab™). 

 
2.1 DIFFERENT TYPES OF NOISE PRESENT IN A GENERAL SYSTEM 

 
In order to maximize the potential of the aforementioned regularization methods, we shall 

start with the brief understanding of different types of noise present in a general system 

described in equation 2.1 with Fig. 1: 

s = i + n 

where, s = Signal; i = Information and n = Noise 
 

 

(a) Information (b) Noise (n) 
 

(c) Signal (s) 

 
Fig. 1: Graphs depicting the general system in equation 2.1 

 

 

 
2.2 DATA ANALYSIS AND STEPS INVOLVED IN THE PROCESS 

The process of obtaining raw data and its conversion into information which is useful for 

decision-making by the user, this is known as data analysis. The various steps involved in data 

analysis are shown in Fig. 2. 
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Fig. 2: A picture showing the steps involved in data analysis 

 

 
2.2.1 DATA COLLECTION AND PROCESSING 

 
Data in general can be collected from various number of sources. Digital sources of data 

collection are some of the most convenient and trusted forms. In today’s world where 

technological advancement is at its peak, sensors form a large part of data collection [9]. They 

are reliable, accurate and can transmit data round-the-clock to computers which can then be 

analyzed by the engineers. Temperature sensors in nuclear power plants, on aircraft to monitor 

engine temperature, seismic sensors in high earthquake prone regions in world are few 

examples that can provide engineers and scientists’ accurate data that can save lives during 

critical situations. 

The collected data must then be organized for future analysis. This process of organization of 

collected data is known as data processing. Example of data processing is the placement of 

data into columns and rows with respective variable names in a statistical software 

(Microsoft® Excel or Minitab™). 

 
2.2.2 CLEANING OF PROCESSED DATA 

Data cleaning (cleansing) is the process of understanding, collection and then removal of errors 

that may be present in the processed data [10]. This process is very critical during the final step 

of data analysis as it improves the accuracy of results. When dealing with quantitative 

processed data using various outlier removal methods forms the part of data cleaning. Outliers 

are values or observation in processed data that lie far part from the main pattern of the entire 

dataset. Fig. 2 shows a process with (Fig. 2a and without outliers 2b). 
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Time in seconds (s) 
 

 

 

 
Time in seconds (s) 

 

(a) Graph without outlier 

Fig. 3: Representation of Outliers in a process 

 
There are various methods to detect outliers in a process, one of the most commonly used 

technique is the scatterplot. This is very easy and quick process to detect the number of points 

lying outside the standard pattern of the whole process (Fig.3). 

(a) Graph outlier 
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Fig. 4: A scatterplot showing the process trend and the detected outliers 

 

 
There are many other techniques like the box plot that are used in the detection of outliers in a 

process. The advantage of using box plot is that it provides clear information on mild and 

extreme outliers. Box plot also has the option of detecting outliers by using median, 1st  and 

3rd quartile principle. A typical boxplot is shown in Fig. 5. 

 
Boxplot 
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Fig. 4: A boxplot showing the detected outliers 

 

After the detection of outliers, one cannot simply employ univariate and multivariate methods to 

remove the detected outliers as it can have adverse effect on the entire process. So using robust 
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techniques like "Minkowski error" method helps to reduce the impact of outliers on the dataset 

(or model). The major advantage of "Minkowski error" over RSS is that it reduces the effect of 

outliers by taking the power of error terms lesser than 2 [11]. 

In certain scenarios, processed data and/or processed data after treating outliers may be skewed. 

This type of skewed data needs to be transformed using certain transformation techniques 

before analyzing exploratory. The most common method employed for skewed data is the Box- 

Cox (or power) transformation. 

x(λ) = 
(xλ −1) 

λ 
λ = 0 (2.2) 

 

x(λ) = ln(x) λ = 0 (2.3) 

 
where, x(λ) = Transformed data; x = Skewed data; λ = Box-Cox parameter 

But the best way [12] to select “λ" is by using LLF (logarithm of likelihood function). 

This marks the conclusion of cleansing of processed data. 

 

2.2.3 EXPLORATORY DATA ANALYSIS 

The process of deciphering the cleaned data extensively by using visualization techniques, 

calculation of vital descriptive statistics (like mean, median, mode etc.) is known as exploratory 

data analysis. This helps the user to comprehend the meaning behind the obtained dataset. 

Hence it translates to exploring the cleaning data from all possible angles. It consists of many 

sub-tasks like, re-cleansing (if necessary), procurement of additional data, calculation of 

descriptive statistics and visualization 

 

2.2.4 DATA MODELING 

The final step in process of data analysis is data modeling. The knowledge obtained from 

exploratory data analysis steps plays a vital role in the identification of certain relationship 

between variables. Various relationships such as regression analysis, correlation can be 

obtained by compiling specific algorithms and/or applying specific mathematical formulae. 

Finally, the user can construct descriptive models for analysis [13]. The results obtained can 

be termed as information, this can help the user to understand the datasets and certain changes 

can be made in order to improve the efficiency of the process for future studies. 

 

 
3. A BRIEF DISCUSSION ABOUT NOISE 

This section focuses on the different types of noise and its characteristics encountered in 

various statistical and signal processing fields. As shown in equation 2.1, noise "n" can be 

classified as shown below, 
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Fig. 5: Classification of noise 

 
Note: As seen from Fig. 5, 

 

(∗) =⇒ main focal point. Hence it is explicitly described in 3.3. 
 

(∗∗) =⇒ additive noise includes many other slightly less significant subdivision. 
 

3.1 DIFFERENT TYPES OF NOISE (Fig 5) are explained below[14]: 

 
3.1.1 Multiplicative noise:  

In a given system, if the random term depends on the state of that system, this type of 

noise is termed as multiplicative noise. In terms of dataset, we can say that the noisy data 

is the resultant of noise multiplied to the data vector. This can be clearly interpreted with 

the help of a following system(model). 

s = i · n (2.4) 

where s= Signal; i=Information (true signal) and n=Noise 

 

Denoising of multiplicative noise requires a transformation of the model in equation 

2.4 into additive noise. Logarithmic transformation is very helpful tool in denoising 

multiplicative noise as this provides an additive form. 

 

log(s) = log (i · n)     (2.5) 

log(s) = log(i) + log(n) (2.6) where 

s=Signal; i=Information(true signal) and n=Noise 

Now, equation 2.6 clearly represents an additive system and various denoising techniques 

can be applied. Finally, inverse logarithm (log−1) of the denoised signal provides the 

solution to the original system. 
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3.1.2 Poisson Noise: 

Poisson noise is also termed as shot noise (Fig. 6). Shot noise is mainly observed in 

electronic devices. This type of noise is generated when a charge carrier such as electrons 

or ions travel through a gap results in random fluctuation in electric current. This random 

fluctuation is known as shot noise [15]. 

 

                                                                        Fig.6: Poisson Noise 

 

3.1.3 Transient Noise: 

This type of noise is very common in the field of communication systems like mobile 

phones and hearing aids. The background noise that hinders communication in the field 

of communication systems is termed as transient noise (Fig.7) 

 

                                                      Fig.7: Transient noise 

3.1.4 Burst Noise: 

Burst noise is also termed as Random Telegraph Signal (RTS) and “popcorn” noise. It is 

very similar to the shot noise and generated at low frequencies. When a single charger 

carrier is captured by a single trapping center, this leads to the generation of burst noise 

as shown in Fig. 8. 
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Fig.8: A graph showing the generation of pop (burst) noise 

 
3.1.5 Phase noise: 

In order to understand the meaning and definition of phase noise, let us define the term 

"phase". Phase in a waveform cycle is defined as the position of a point in time. Three 

types of phases in a wave is shown in Fig.9. Square, triangle, sinusoidal complex are a 

few examples of different types of waveforms shown in Fig.9. The random and rapid 

variation of phase in a signal (waveform) caused by time domain instability is known as 

phase noise. 

Fig.9 A picture showing common types of waveforms 



11  

1 

1 

0.8 

0.6 

 

0.4 

 
0.2 

 

0 

 
-0.2 

 

-0.4 

 
-0.6 

 

-0.8 

 
-1 

 

 

0 1 2 3 4 5 6 7 

time (in seconds) 

(a) 

 

1 

 

0.8 

 
0.6 

 
0.4 

 

0.2 

 

 
0 

 

-0.2 

 
-0.4 

 

-0.6 

 
-0.8 

 
-1 

 

Time (in seconds) 

(b) 

Time (in seconds) 

(c) 

Fig.10: Graphs showing two waves in phase (a), out of phase (b) & completely 

out of phase (c) 
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3.2 Additive White Gaussian Noise (AWGN) 

Before jumping into the deep end regarding the explanation of AWGN, let us first 

break down and understand the terminology "Additive White Gaussian Noise". 

3.2.1 Additive =⇒This type of noise are additive in nature. This means that the received 

signal is the resultant of information added with some noise as shown in equation 

2.1. 

3.2.2. White =⇒ It is mixture of all types or colors of noise. White light is mixture of all 

the frequencies or wavelength of visible spectrum (shown in Fig. 11). This 

definition of white light is literally translated into white noise [16]. 

3.2.3 Gaussian =⇒ This type of noise follows normal probability distribution 

Function (pdf), classified as shown below: 
 

 

 

Fig. 11: A picture showing the visible spectrum 

 
 

White noise with respect to a signal and its source is a statistical model having constant power 

spectral density (PSD), which means that it is a random noise having equal intensity for 

different frequencies. An example of the Gaussian white noise is shown below: 
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(a) 
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(b) 
 

Fig. 12: Representation of Gaussian white noise and its quantile-quantile plot 

 

3.3 Brownian Noise 

Brownian noise [17] is also known as, 

3.3.1 Red Noise –Longer wavelength produces stronger noise similar to radio 

waves shown in Fig.13, hence the term "red" noise Brown noise –Robert 

Brown discovered Brownian motion. Hence it’s also coined as "brown" 

noise. 

The characteristics of red noise are briefly discussed below, 

Red noise has more energy at lower frequencies =⇒P (f)∝1/f2. 

Power spectrum is denoted by P (f) 

Frequency is denoted by f Integration 

of white noise → Red noise 



14  

An example of the Brownian or red noise is shown below, 
 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s 

(b) 
 

Fig. 13: Representation of Brownian/red noise and its quantile-quantile plot 

 

 
With this brief understanding of different types of noise, let us now dive into the concepts 

surrounding important regularization methods. 

3.4 A brief discussion regarding regularization methods 

 
As mentioned earlier, the 3 widely used regularization techniques are 

 

1. Ridge regression or Tikhonov regularization method 
 

2. Least Absolute Shrinkage and Selection Operator (LASSO) 
 

3. Total Variation Regularization or Rudin–Osher–Fatemimodel 
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Before we step into each of the aforementioned regularization techniques, let us define the 

term regularization. Regularization is defined as a method that helps to overcome the problem 

surrounding over-fitting of penalized regularization coefficients [18]. This aim of 

regularization is achieved by the introduction of additional information to solve ill-poised 

problems. Due to the fact that minimization of residual sum square are highly unstable in 

nature, regularization methods proves to be all the more important in many scientific fields. 

 
3.4.1 Ridge regression (L2 regularization) 

The aim of ridge regression is to minimize the ordinary least square with an added penalty 

term. This penalty term is the square of the magnitude of the coefficients. This explanation is 

summarized in equation 2.8. 

The ridge regression solution "x̂ridge" solves the following minimization problem for a given 

system Ax = b, 

 
 

 

 

 

 
The equation 2.7 can be represented in a simpler form as, 

(2.7) 

 

 
 

 

 

 

 
Where, 

b ∈ Rn = Response vector; 

A ∈ Rn×m = Predictor matrix 

α = Regularization parameter 

(2.8) 
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α (2.17) 

In matrix notation equation 2.8 becomes, 

Cridge = (A x − b) T (A x − b) + α xT x (2.9) 

Expanding and simultaneous simplification of equation 2.9 results in the following [7]  

 
Cridge = xT AT A x − bT A x − xT AT b + bT b + α xT x (2.10) 

= xT AT A x − xT AT b − xT AT b + bT b + xT αI 

x 

(2.11) 

= bT b − 2 xT AT b + xT AT A x + xT αI x (2.12) 

Cridge = bT b − 2 xT AT b + xT (AT A + αI)x (2.13) 

 
The objective function in 2.7 can be minimized by taking the partial derivative of 2.13 with 

respect to "x”. 

Minimization condition =⇒ the gradient of the objective function must be equal to zero. 

 

 

 

(2.15) 

 

 

 
(2.16) 

 

 

 

 

∗ indicates that the specific part of the equation was achieved by successfully applying matrix 

(symmetric) differentiation rule 

 
Simplification of the equation 2.16 leads to the ridge regression solution i.e., "x̂ridge" 

 

 
 

where, I = Identity matrix (n × m); α I = Ridge term 

Advantages ridge term, 
 

i Facilitates invertibility of resultant matrix and it gets added to the principle diagonal 

ii consistently achieves a unique solution 

The equation 2.8 can be interpreted geometrically as shown below: 

(2.14) 
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Fig. 14: Geometric representation of ridge regression [19] 

 
 

The Fig.14 clearly depicts the aim of ridge (L2-regularization) regression i.e., minimization 

occurs simultaneously between the RSS (ellipse) and the penalty term (circle) mentioned in 

equation 2.8. The simultaneous minimization occurs at "x̂ridge" shown in equation 2.17. 

 
3.4.2 LASSO 

LASSO aims to minimize the ordinary least square with an added penalty term [20]. In case of 

L1- regularization, the penalty term is the sum of the absolute value of the regression 

coefficients. Hence LASSO is also known as the L1-regularization [21] . 

 

 

                               (2.18) 

The equation 2.7 can be represented in a simpler form as, 

 
(2.19) 

 

 

 
where, b ∈ Rn = Response vector; A ∈ Rn×m = Predictor matrix; α = Regularization 

parameter 

 
The first part of the derivation is similar to L2-regularization, in matrix notation equation 2.8 

becomes, 

Classo  = (A x − b)T (A x − b) +α |x|1 (2.20) 
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Expanding and simultaneous simplification of equation 2.20 results in the following, 
 

Classo = xT AT A x − bT A x − xT AT b + bT b + α |x|1 (2.21) 

= xT AT A x − xT AT b − xT AT b + bT b + α |x|1 

Classo = bT b − 2 xT AT b + xT AT A x + α |x|1 

 
The equation 2.7 can be represented in a simpler form as, 

 

  (2.22) 

 
where, b ∈ Rn = Response vector; A ∈ Rn×m = Predictor matrix; α = Regularization 

parameter 

The first part of the derivation is similar to L2-regularization, in matrix notation equation 2.8 

becomes, 

Classo  = (A x − b)T (A x − b) +α |x|1 (2.23) 
 

 

Expanding and simultaneous simplification of equation 2.23 results in the following, 

Classo = xT AT A x − bT A x − xT AT b + bT b + α |x|1 

= xT AT A x − xT AT b − xT AT b + bT b + α |x|1 

Classo = bT b − 2 xT AT b + xT AT A x + α |x|1 

 

 
(2.24) 

 
(2.25) 

(2.26) 

 

 

 

Next, taking the derivative of equation 2.26, we get, 

 
∇Classo = −2AT b + 2AT Ax + ∇(α |x|1) (2.27) 

 
Due the face that equation 2.24 consists of the term "∇(α |x|1)", sub-differential helps us to 

arrive at the final solution. But before we step into sub-differential, let us assume that the AT A 

is equal to I and multiply "2" to the penalty term. 

Equation 2.27 becomes, 

 

Now, the sub-differential 

becomes, 

∇Classo = −2AT b + 2x + 2∇(α |x|1) (2.28) 

 

 
(2.29) 
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Breaking down each of the 3 conditions mentioned in equation 2.29, 

Case 1: when x > 0 2x − 2AT  b + 2α  = 0 (2.30) 

Equation 2.30 must be satisfied. 

Therefore, we get, x = 2AT b − α (2.31) 
 

Case 2: when x = 0 

0 ∈ [−2α, 2α] − 2AT b (2.32) 
 

Therefore, we now have 2 sub-cases, i.e, 
 

−2α − 2AT b < 0 =⇒ α > −AT b (2.33) 

2α − 2AT b > 0 =⇒ α > AT b (2.34) 

The sub-cases mentioned in equation 2.34 becomes, 
  

α > AT b  (2.35) 
 

 

when x = 0 

Case 3: when x < 0 

 
 

Equation 2.36 must be satisfied. 

Therefore, we get, 

 

 

 
2x − AT  b− 2α = 0 (2.36) 

 

 
 

x = AT  b + α (2.37) 

 

The aforementioned cases help us to arrive at the solution for LASSO and it summarized in 

the equation below, 

 

 

 
 

(2.38) 
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The equation 2.22 can be interpreted geometrically as shown below: 
 

 
Fig. 15: Geometric representation of LASSO regression [22] 

 
The Fig.15 clearly depicts the aim of LASSO (L1-regularization) regression i.e., minimization 

occurs simultaneously between the RSS (circle) and the penalty term (square) mentioned in 

equation 2.19. The simultaneous minimization occurs at “xˆlasso” shown in equation 2.38. 
 

Table 1: Comparison between L1 and L2 regularization 

 
Properties L1 regularization L2 regularization 

 
Robustness 

 

Penalty term 

Absolute value of 

coefficients 

Outliers are affected linearly 

This method is more robust 

Penalty Term 

square of the 
coefficients 

Outliers are affected exponentially 

This method is less robust 

 

 
Computational 

effort 

Penalty term 
 

Non-differentiable 
term 

This method requires more 

computational effort 

Penalty Term 

Closed form of 
solution 

Solution are obtained by 

using matrix form 

This method requires less 

 

Sparsity 

This method has the ability to shrink 

coefficients to zero 

Sparse solution. 

This method spreads the error 

hindering sparsity 
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4.0 CONCLUSION 

 

The fundamentals of large-scale statistics was focused with retrieving the information from 

noisy data in the present review article. The method of total variation regularization helps to 

study thoroughly and understand the concept behind regularization parameter on various test 

functions each at different amplitude of noise. The study behind the optimal parameter value 

shines light on the fact that a stronger noise level in a large-scale dataset requires considerably 

strong optimal parameter. As we know that, in the real-life problems it is very difficult to 

define noise from the actual measurement data which needs the iterative process to 

automatically obtain regularization parameter. The information being tracked was 

implemented in the process of finding differential equations by using data-driven (or Sparse 

Regression) method. 
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