1

2

3

STATISTICAL COMPARATIVE STUDY OF THE TREND AND VARIATION OF METROLOGICAL PARAMETERS IN ABEOKUTA, SOUTH-WEST NIGERIA

- 4
- 5

6 ABSTRACT

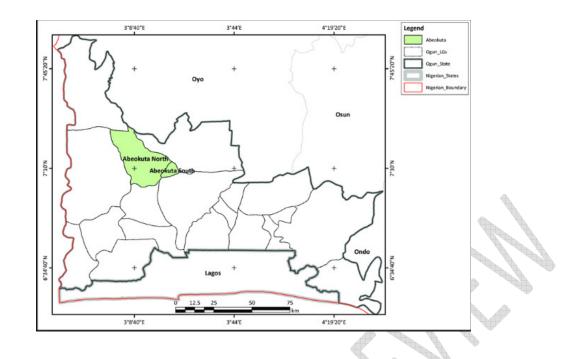
7 This study focuses on the statistical comparative study of the trend and variation of metrological parameters covering a 10 year period (2001-2010) in the capital and largest city of Ogun Sate 8 Abeokuta, southwest region of Nigeria. The analyzed climatic parameters were: wind speed, 9 vapour pressure, relative humidity, temperature and sunshine covering 10 years. The variability 10 threshold of 10% was exhibited for average Coefficient of Variation (CV) values show the CV 11 for sunshine (22.78%), wind speed (21.55%), and rainfall (99.12%) is a proof of exceedence 12 while the CV calculated for parameters like: air temperature (5.74%), relative humidity (4.52%) 13 and vapour pressure (5.22%) show no significance of variability. Significance test of 14 metrological parameters' trend reveals a notable reduction in the values of vapour pressure, air 15 temperature and relative humidity. It is, however, difficult to argue for a well-defined change in 16 most of the meteorological parameters based on the monthly time series analysis performed in 17 this work. Only wind speed shows statistically significant increasing trend during the period of 18 observation at 1% significance level. The trend shows by others are statistically not significant. 19 ANOVA test of significant difference among meteorological parameters from shows a *p*-value 20 (Sig.) of 0.000 is an indication of significant difference in the analyzed mean monthly coefficient 21 of variation for the metrological parameters (rainfall, sunshine, vapour pressure, wind speed, air 22 temperature and relative humidity). The Tukey's multiple pair comparisons test however shows 23 that there is significant difference between the mean monthly CV of rainfall-sunshine, rainfall-24 vapour pressure, rainfall-wind speed, rainfall-air temperature and rainfall-relative humidity. At 25 significance level of 5%, the calculated mean monthly CV of rainfall is significantly different 26 from the mean monthly CV of other climatic parameters. 27

- 28
- 29
- 30
- ~ -
- 31
- 32

Keywords: Comparative, Metrological, Parameters, Statistical, Study, Trend, Variation.

34

35 **1. INTRODUCTION**


Climate study is worth investigating since human lives is strictly attached and it is important to have knowledge of our environmental changes that we would not be caught unaware by

- the consequences of the adverse effect offered. The role of climate in environmental changes 38 cannot be underestimated since its variation has a great influence on socio-economic 39 activities. It is of great importance to know that improper management of climate could lead 40 to natural disasters. It is therefore imperative to introduce protective schemes through the 41 results obtained from quality research works that related with environment. Year to year 42 variability is caused by climate and has a link with socio-economic and environmental 43 activities. It is of great importance toward the development and proper planning of schemes 44 45 that relates to water resources such as the management of drought, the prevention and control of flood. Importantly, natural and ecosystems coupled with the society as a whole are directly 46 linked to the consequences of change in climatic pattern either positively or negatively. 47 Invariably, there could be alteration in the location of the major crop production regions on 48 49 the earth.
- It is important to know that [1] and [3] have researched extensively on climate and agriculture. In their researches they found out that climatic parameters (i.e. rainfall, sunshine, temperature, evaporation etc.) are closely related and have influence on crop production. Some factors which influence crop production such as soil, climate, and pests are the commonest forms of draw backs but climate also plays a huge role and has influence on agricultural production [5]. A declining trend in precipitation was observed over Greece [2], [6], [7] [10] whereas [11], Mainland Spain experienced rising trend.
- 57 Instability of weather could offer adverse effects in social, economic and regional 58 competitiveness [9].The negative change in climatic pattern could be harmful to socio-59 economic activities thereby causing reduction in food and fibers delivery to the teeming 60 population [10].
- The objectives of this study are: to examine the variations in rainfall, sunshine, air temperature, wind speed, relative humidity and water vapour patterns in the study area, to examine the statistical link between sunshine, air temperature, wind speed, relative humidity rainfall and water vapour in the study area and to determine the nature of the climatic variation in the study area and its possible effects.
- 66
- 67
- 68

69 2. STUDY AREA

Abeokuta , the study area lies between longitudes 3° E and 3° 25′ E and latitudes 7° 3′ , 11.375 71 ″ N and 7° 25′, 6.294″N [4] . It is located in Ogun state and its capital. It is important to know 72 that Abeokuta is the largest city in Ogun State, Southwest, Abeokuta lies in the wooden savanna 73 and the surface is characterized with masses of granite with grey color. It covers an extensive 74 area being surrounded by mud walls which is of 18 miles in extent. Nigeria is a country in West 75 Africa that shares land boarders with countries like Cameroun situated in the east axis, Republic 76 of Benin located in the west axis while Nigeria is positioned in the Northern region [11].

78

79 80

Figure 1: The map of Nigeria showing the position of Abeokuta, Ogun State [4].

82 83

84 3. METHODOLOGY

Ten years metrological parameters (relative humidity, temperature, sunshine, wind speed, rainfall and vapour pressure) for Abeokuta Southwest Nigeria were collected from the Nigerian Meteorological Agency (NIMET) archive. The coefficient of variation was calculated as described in equation (1) by [8].

89

$$CV = \left(\frac{\sigma}{MP}\right) \times 100\% \tag{1}$$

90 The calculated monthly mean of the metrological parameters is denoted as MP while σ is the 91 standard deviation.

92 The statistical analysis were done using descriptive statistics, Kendall's tau_b, Spearman's rho,

ANOVA and Tukey's multiple pair comparisons test. Data collected were analyzed
 electronically using Ms-Excel (version 2007) and SPSS (version 21.0).

The Kendall's tau_b for measuring order association between variables X and Y is given by the
following formula :

$$\tau_b = \frac{P - Q}{\sqrt{D_r D_c}} \tag{2}$$

97 Where the P and Q listed above are double the "usual" P (number of concordant pairs) and Q 98 (number of discordant pairs). Likewise, D_r is double the "usual" P+Q+X₀ (the number of 99 concordant pairs, discordant pairs, and pairs on which the row variable is tied) and D_c is double 100 the "usual" P+Q+Y₀ (the number of concordant pairs, discordant pairs, and pairs on which the 101 column variable is tied).

102

The Spearman correlation coefficient is defined as the Pearson correlation coefficient between
 the ranked variables.

For a sample of size *n*, the *n* raw scores X_i , Y_i are converted to ranks rg X_i , rg Y_i , and r_s is computed from:

$$r_s = \rho_{rgX,rgY} = \frac{Cov(rg_X, rg_Y)}{\sigma_{rgX}\sigma_{rgY}}$$
(3)

- 107 Where ρ denotes the usual Pearson correlation coefficient, but applied to the rank variables.
- 108 $Cov(rg_X, rg_Y)$ is the covariance of the rank variables.
- 109 σ_{rqX} and σ_{rqY} are the standard deviations of the rank variables.
- 110 Only if all *n* ranks are distinct integers, it can be computed using the popular formula

$$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)} \tag{4}$$

111 Where $d_i = rg(X_i) - rg(Y_i)$, is the difference between the two ranks of each observation.

- 112 *n* is the number of observations.
- 113

119

ANOVA (One-way) is a technique that can be used to compare means of two or more samples
 (using the F distribution). The ANOVA test the null hypothesis that samples in all groups are
 drawn from populations with same mean values.

117 The normal linear model implemented in this study is means model which is given as :

118
$$y_{ij} = \mu_j + \epsilon_{ij}$$

120 **Tukey's multiple pair comparisons test** compares the means of every treatment to the means of 121 every other treatment; that is, it applies simultaneously to the set of all pairwise comparisons 122 $\mu_i - \mu_j$ and identifies any difference between two means that is greater than the expected 123 standard error.

(6)

(5)

124 The formula for Tukey's test is:

$$q_s = \frac{Y_A - Y_B}{SE}$$

- 125 Where Y_A is the larger of the two means being compared.
- 126 Y_B is the smaller of the two means being compared.
- 127 SE is the standard error of the two sum of the means.
- 128 This q_s value can then be compared to a q value from the studentized range distribution. If the q_s
- value is larger than the critical value q_{α} obtained from the distribution, the two means are said to
- 130 be significantly different at level α , $0 \le \alpha \le 1$.
- 131

132

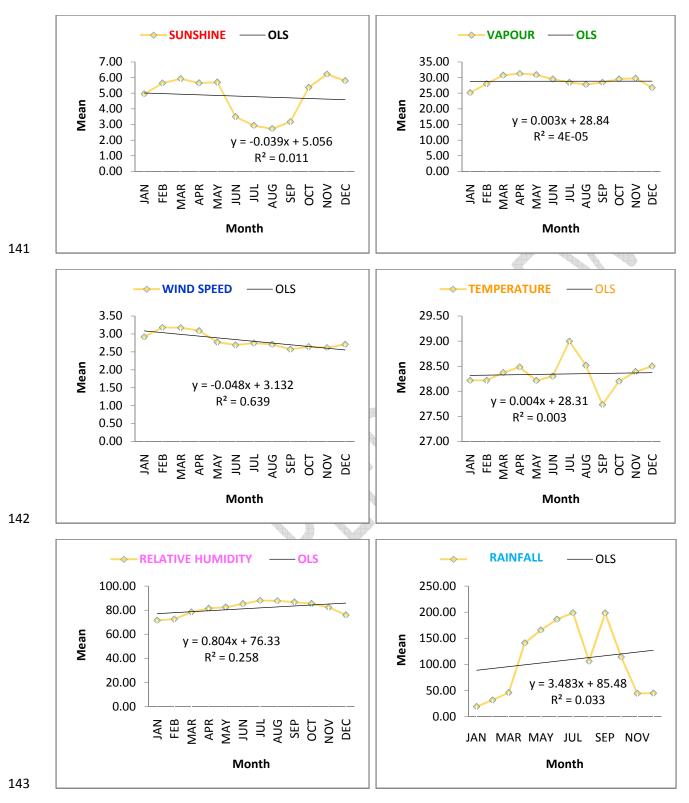
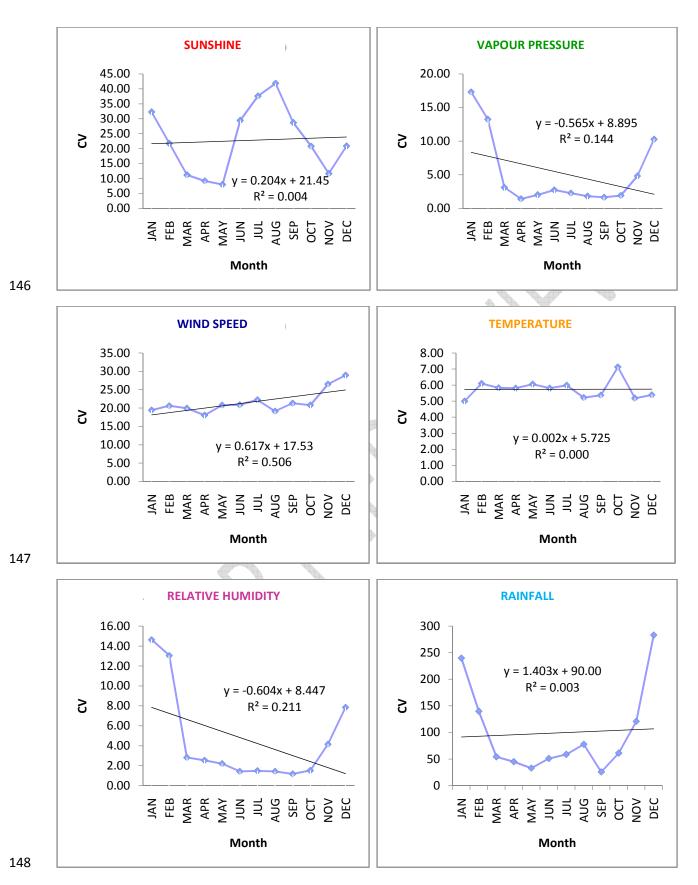
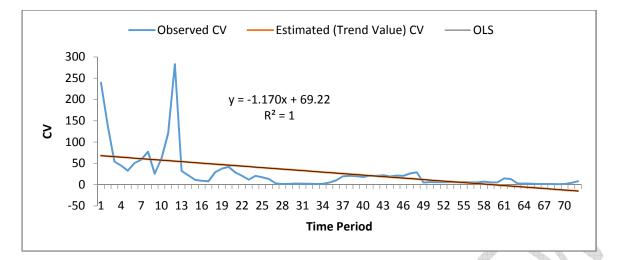
133

134

135 136

137 **4. RESULTS**

- 138
- 139 Data presentation
- 140

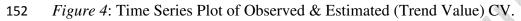

Figure 2: Monthly Mean Values and Trend of the Meteorological Parameters in Abeokuta.

Figure 3: Monthly Coefficient of Variation (CV) and Trend of the Meteorological Parameters inAbeokuta.

153

154 • Data analysis

Ν	Minimum	Maximum	Mean	Std. Deviation
12	25.62	283.23	99.1247	83.36912
12	8.01	41.84	22.7808	11.35960
12	1.41	17.33	5.2167	5.36420
12	18.04	28.95	21.5492	3.12828
12	5.00	7.13	5.7400	.57479
12	1.16	14.63	4.5150	4.74239
12				
	12 12 12 12 12 12	1225.62128.01121.411218.04125.00121.16	1225.62283.23128.0141.84121.4117.331218.0428.95125.007.13121.1614.63	1225.62283.2399.1247128.0141.8422.7808121.4117.335.21671218.0428.9521.5492125.007.135.7400121.1614.634.5150

Table 1: Descriptive Statistics of Monthly Coefficient of Variation (CV)

155

			5					
	-		RAINFALL	SUNSHINE	VAPOUR PRESSURE	WIND SPEED	AIR TEMPERATURE	RELATIVE HUMIDITY
Kendall's tau_b	RAINFALL	Correlation Coefficient	1.000	.273	.545 [*]	.091	121	.545
		Sig. (2-tailed)		.217	.014	.681	.583	.014
		Ν	12	12	12	12	12	12
	SUNSHINE	Correlation Coefficient	.273	1.000	.121	.030	242	061
		Sig. (2-tailed)	.217	-	.583	.891	.273	.784
		Ν	12	12	12	12	12	12
	VAPOUR PRESSURE	Correlation Coefficient	.545	.121	1.000	.182	152	.636
		Sig. (2-tailed)	.014	.583		.411	.493	.004
		Ν	12	12	12	12	12	12
	WIND SPEED	Correlation Coefficient	.091	.030	.182	1.000	.000	121
		Sig. (2-tailed)	.681	.891	.411		1.000	.583
		Ν	12	12	12	12	12	12

Table 2: Bivariate Correlations Among Meteorological Parameters

	AIR TEMPERATUR	Correlation Coefficient	121	242	152	.000	1.000	091
	E	Sig. (2-tailed)	.583	.273	.493	1.000		.681
		Ν	12	12	12	12	12	12
	RELATIVE HUMIDITY	Correlation Coefficient	.545	061	.636	121	091	1.000
		Sig. (2-tailed)	.014	.784	.004	.583	.681	-
		Ν	12	12	12	12	12	12
Spearman's rho	RAINFALL	Correlation Coefficient	1.000	.315	.748	.140	252	.706 [*]
		Sig. (2-tailed)		.319	.005	.665	.430	.010
		Ν	12	12	12	12	12	12
	SUNSHINE	Correlation Coefficient	.315	1.000	.126	.049	322	273
		Sig. (2-tailed)	.319		.697	.880	.308	.391
		Ν	12	12	12	12	12	12
	VAPOUR PRESSURE	Correlation Coefficient	.748	.126	1.000	.238	126	.762
		Sig. (2-tailed)	.005	.697		.457	.697	.004
		Ν	12	12	12	12	12	12
	WIND SPEED	Correlation Coefficient	.140	.049	.238	1.000	.021	112
		Sig. (2-tailed)	.665	.880	.457		.948	.729
		Ν	12	12	12	12	12	12
	AIR TEMPERATURE	Correlation Coefficient	252	322	126	.021	1.000	119
		Sig. (2-tailed)	.430	.308	.697	.948		.713
		Ν	12	12	12	12	12	12
	RELATIVE HUMIDITY	Correlation Coefficient	.706 [*]	273	.762	112	119	1.000
		Sig. (2-tailed)	.010	.391	.004	.729	.713	-
		Ν	12	12	12	12	12	12

156 157 *Correlation is significant at the 0.05 level (2-tailed) **Correlation is significant at the 0.01 level (2-tailed)

158

159 160

•

Table 3: Significance Test of Metrological Parameters' Trend Significance Levels are Indicated: 95% (*), 99% (**)

Meteorological	Kendall's tau_b	Kendall's tau b Spearman's rho					
Parameter							
RAINFALL	0.091	0.091	0.061				
SUNSHINE	-0.030	0.028	0.065				
VAPOUR PRESSURE	-0.182	-0.245	-0.380				
WIND SPEED	0.576** (increasing trend)	0.713** (increasing trend)	0.712** (increasing trend)				
AIR TEMPERATURE	-0.121	-0.133	0.014				
RELATIVE HUMIDITY	-0.303	-0.343	-0.460				

161 162

Table 4: ANOVA Test of Significant Difference Among Meteorological Parameters

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	80160.369	5	16032.074	13.471	.000
Within Groups	78546.594	66	1190.100		
Total	158706.963	71			

Table 5: Tukey's Multiple Pair Comparisons test

(I) Group	(J) Group	Mean Difference	Std.	Sig.	95% Confidence Interval		
()	(-)	(I-J)	Error	- 9.	Lower Bound	Upper Bound	
	SUNSHINE	76.34417 [*]	14.08368	.000	35.0072	117.6811	
	VAPOUR PRESSURE	93.90833*	14.08368	.000	52.5714	135.2453	
RAINFALL	WIND SPEED	77.57583*	14.08368	.000	36.2389	118.9128	
	AIR TEMPERATURE	93.38500*	14.08368	.000	52.0481	134.7219	
	RELATIVE HUMIDITY	94.61000 [*]	14.08368	.000	53.2731	135.9469	
		94.01000	14.00300	.000	55.2751	155.9409	
	RAINFALL	-76.34417 [*]	14.08368	.000	-117.6811	-35.0072	
	VAPOUR PRESSURE	17.56417	14.08368	.812	-23.7728	58.9011	
SUNSHINE	WIND SPEED	1.23167	14.08368	1.000	-40.1053	42.5686	
	AIR TEMPERATURE	17.04083	14.08368	.830	-24.2961	58.3778	
	RELATIVE HUMIDITY	18.26583	14.08368	.786	-23.0711	59.6028	
	RAINFALL	-93.90833*	14.08368	.000	-135.2453	-52.5714	
VAPOUR PRESSURE	SUNSHINE	-17.56417	14.08368	.812	-58.9011	23.7728	
	WIND SPEED	-16.33250	14.08368	.854	-57.6694	25.0044	
	AIR TEMPERATURE	52333	14.08368	1.000	-41.8603	40.8136	
	RELATIVE HUMIDITY	.70167	14.08368	1.000	-40.6353	42.0386	
	RAINFALL	-77.57583 [*]	14.08368	.000	-118.9128	-36.2389	
	SUNSHINE	-1.23167	14.08368	1.000	-42.5686	40.1053	
WIND SPEED	VAPOUR PRESSURE	16.33250	14.08368	.854	-42.0000	40.1033 57.6694	
	AIR TEMPERATURE	15.80917	14.08368	.870	-25.5278	57.1461	
	RELATIVE HUMIDITY	17.03417	14.08368	.831	-24.3028	58.3711	
			1 1.00000	.001	21.0020	00.0711	
	RAINFALL	-93.38500 [*]	14.08368	.000	-134.7219	-52.0481	
	SUNSHINE	-17.04083	14.08368	.830	-58.3778	24.2961	
AIR TEMPERATURE	VAPOUR PRESSURE	.52333	14.08368	1.000	-40.8136	41.8603	
	WIND SPEED	-15.80917	14.08368	.870	-57.1461	25.5278	
	RELATIVE HUMIDITY	1.22500	14.08368	1.000	-40.1119	42.5619	
		*					
	RAINFALL	-94.61000	14.08368	.000	-135.9469	-53.2731	
RELATIVE HUMIDITY	SUNSHINE	-18.26583	14.08368	.786	-59.6028	23.0711	
	VAPOUR PRESSURE	70167	14.08368	1.000	-42.0386	40.6353	
	WIND SPEED	-17.03417	14.08368	.831	-58.3711	24.3028	
	AIR TEMPERATURE	-1.22500	14.08368	1.000	-42.5619	40.1119	

*. The mean difference is significant at the 0.05 level.

163

164

Table 6: Tukey's Homogeneous Subsets

Group	N	Subset for alpha = 0.05					
		1	2				
RELATIVE HUMIDITY	12	4.5150					
VAPOUR PRESSURE	12	5.2167					
AIR TEMPERATURE	12	5.7400					
WIND SPEED	12	21.5492					
SUNSHINE	12	22.7808					
RAINFALL	12		99.1250				
Sig.		.786	1.000				

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 12.000.

165

166 5. DISCUSSION OF RESLTS

Climate is traditionally defined as the description in terms of the mean and variability of 167 168 relevant atmospheric variables such as temperature, precipitation and wind. Sunshine, rainfall vapour pressure, air temperature, relative humidity and sunshine mean monthly average are 169 shown in Figure 2. January, February, March, April, May, October, November and December 170 171 show maximum sunshine in the year under study. Incessant cloud formation depletes the amount of sun reaching us is accountable for the minimum sunshine experienced in August which was 172 earlier reported by [8] for Ibadan sunshine hour in 2012. R^2 of 0.011 implies that approximately 173 174 1.1% of the variation in sunshine distribution was being explained by the monthly time period 175 under study.

- A gradual pick up in vapour pressure was experienced in January which spans through the months of February, March and April but dropped in May. There was persistence in the trend of
- 178 vapour pressure in July and August. October and November showed a rise in the vapour pressure 179 while there was sudden collapse in December. R^2 of 4E-05 implies that the monthly time period
- 180 under study does not explain a significant variation in vapour pressure distribution.
- 181 Unstable wind speed distribution was observed for the period under study. February and March
- relays peak levels of wind speed while September marked a low distribution. R^2 of 0.639 implies that approximately 63.9% of the variation in wind speed distribution is being explained by the
- 184 monthly time period under study.
- 185 Highest value of air temperature was recorded in July which eventually collapsed in August and
- spans through August and September. Least temperature is shown in September which gradually
- increases from the months of October to December. R^2 of 0.003 implies that approximately 0.3%
- 188 of the variation in air temperature distribution is being explained by the monthly time period 189 under study.
- 190 There is an exponential rise in relative humidity in months January, February, March, April,
- 191 May, June and July. August revealed upward trend movement of the relative humidity regimes
- which later showed a trend collapse and decreased from September to December. R^2 of 0.258 implies that approximately 25.8% of the variation in relative humidity distribution is being
- 194 explained by the monthly time period under study.
- 195 Mean monthly distribution of rainfall showed a low rainfall for the months of January, February,
- 196 March, November and December. There was an upward increase of rainfall from April to July. A
- 197 sudden collapse in the rise level of rainfall was experienced in August which later dropped
- 198 gradually in September and gradually reduced from the month of October to December. R^2 of
- 199 0.033 implies that approximately 3.3% of the variation in rainfall distribution is being explained
- 200 by the monthly time period under study.
- Figure 3 shows the coefficients of variation (CV) for the climatic parameters under study. The
- 202 highest values of the CV calculated for the climatic parameters sunshine, vapour pressure, wind

- speed, rainfall, air temperature and relative humidity were: 41.84%, 17.33%, 28.95%, 283.23%, 203
- 7.13% and 14.63% respectively while lowest values were: 8.01%, 1.41%, 18.04%, 25.62%, 204 5.00% and 1.16% respectively. From the obtained results, rainfall exhibits the highest variation 205 while relative humidity depicts the least variation. 206
- The descriptive statistics result from Table 1, indicates that we expect the monthly CV for 207 rainfall to be 99.12%, the expected monthly CV for sunshine to be 22.78%, the expected 208 monthly CV for vapour pressure to be 5.22%, the expected monthly CV for wind speed to be 209 210 21.55%, the expected monthly CV for air temperature to be 5.74% and the expected monthly CV

for relative humidity to be 4.52%. 211

- Table 2 shows bivariate correlations among the metrological parameters using Kendall's tau b 212 213 and Spearman's rho statistics. From Kendall's tau_b analysis, it shows there is a weak positive association between rainfall-sunshine, rainfall-wind speed. Sunshine-vapour pressure, sunshine-214 wind speed, vapour pressure-wind speed. Weak negative association is observed between 215 rainfall-air temperature, wind speed-relative humidity, vapour pressure-air temperature, 216 sunshine-air temperature and sunshine-relative humidity. There is an average significant 217 relationship between rainfall-vapour pressure, rainfall-relative humidity but a strong positive 218 219 significant correlation between vapour pressure and relative humidity at 5% significance level. There is no association between air temperature-wind speed. Spearman's rho results show that 220 there is a very strong positive significant correlation between rainfall-vapour pressure, rainfall-221 relative humidity, vapour pressure-relative humidity at 5% significance level. Negative 222
- correlation is experienced between rainfall-air temperature, sunshine-air temperature, sunshine-223 relative humidity, vapour pressure-air temperature, wind speed-relative humidity and air 224 225 temperature-relative humidity.
- Significance test of metrological parameters' trend from Table 3 reveals a notable deterioration 226 in the values of vapour pressure, air temperature and relative humidity. It is, however, difficult to
- 227
- argue for a well-defined change in most of the meteorological parameters based on the monthly 228 time series analysis performed in this work. Only wind speed shows statistically significant 229
- increasing trend during the period of observation at 1% significance level. The trend shows by 230 others are statistically not significant. 231
- 232 ANOVA Test of significant difference among meteorological parameters from Table 4 shows a *p*-value (Sig.) of 0.000 indicating a significant difference in the mean monthly coefficient of 233 variation of the six climatic parameters (rainfall, sunshine, vapour pressure, wind speed, air 234 temperature and relative humidity). In other words, the mean monthly coefficient of variation of 235
- at least one of the parameters is significantly different from others. 236
- 237 The Tukey's multiple pair comparisons test from Table 5 shows that there is significant 238 difference between the mean monthly CV of rainfall-sunshine, rainfall-vapour pressure, rainfallwind speed, rainfall-air temperature and rainfall-relative humidity. It is therefore evident that the 239 mean monthly CV of rainfall is significantly different from the mean monthly CV of the other 240 241 climatic parameters at 5% significance level.
- 242 The Tukey's homogeneous subset from Table 6 shows the order of importance of the metrological parameters under study. It reveals that relative humidity is of the most important, 243 244 followed by vapour pressure, air temperature, wind speed, sunshine and rainfall as the least important. 245
- 246

248

6. **CONCLUSION** 247

This study revealed the occurrence of significant difference in variation for all the investigated 249 250 metrological parameters. Also, there is a notable deterioration in the values of vapour pressure, air temperature and relative humidity. Only wind speed shows statistically significant increasing 251

trend during the period of observation while the trend shows by others are statistically not 252 significant. Rainfall, wind speed and temperature are not life threatening to the residents of 253 Abeokuta. For vapour pressure, only months of January, August and December are safe but 254 proper precautionary measures must be infused in other months in order to reduce problems of 255 high blood pressure due to high vapour pressure. Since the relative humidity is higher than the 256 tolerable limit of 60%, Abeokuta is subject to heat .Therefore, the residents should endeavor to 257 provide themselves cooling systems for homeostasis to be engaged. Also, exposure time to 258 259 sunlight should also be reduced in months of November and December respectively so as to avoid or reduce the aging of the skin due to excessive exposure to sunlight. 260

- 261
- 262 Include
- 263

264 7. REFERENCES

- 1. Ayoade, J.O. (2004): Introduction to climatology for the Tropics, Revised edition Spectrum
 books limited, Ibadan.
- 267 2. Boyles, R.P. and Raman, S. (2003): Analysis of climate trends in North Carolina Environ
 268 Int.29 (2-3), pp. 263-275.
- 3. Cicek, I. and Turgoku, N. (2005): 'Urban effects on precipitation Ankara Turkey' Atmosphere
 18(3), pp. 173-187.
- 4. David, O.B. and Lobina, G.P.(2016): Modelling a critical infrastructure-driven spatial
- database for proactive disaster management :A developing country context, Journal of Disaster
 risk studies,8(1).pp.1-14.
- 5. Efe, S.I. (2009): Climate change and Food Security in Africa, Delta State Nigeria. Conference
 proceedings on climate change and the Nigerian Environment held at UNN 29th June-July 2nd,
 pp. 105-126.
- 6. Gan, T.Y. (1998): Hydro climatic trends and possible warming in the Canadian Prairies. Water
 Resources, International Journal of Climatology, 34 (1),pp.15.
- 7. Giakoumakis, S.G. and Baloustsos, G. (1997): Investigation of trend in hydrological time
 series of the Evinos River Basin. Hydrological Sciences Journal, 42 (1),pp. 81-88.
- 8. Murat Turkes, Utku, M. Sumer, and Gonul Kilic.(1995) "Variations and Trends in Annual
- Mean Air Temperatures in Turkey with respect to Climatic Variability". International Journal of
 Climatology, 15,pp.557-564.
- 9. Ogolo E.O. and Adeyemi, B. (2009): Variations and Trends of Some Metrological Parameters
 at Ibadan, Nigeria. Pacific Journal, 10(2).pp. 981-987.
- 10. Reddy, K.R. and Hyiges, H.F (2000): Climate change and global crop productivity. CABInternational Publishing.

- 288 11. Sodunke, M.A, Adewale, A.O, Alabi, A.A, Sunmonu, R.S, Mabosanyinje . A (2016): "Analytical
- 289 Study on the variation of Climatic Parameters at Abeokuta, South-West, Nigeria".International
- Journal of Advances in Science Engineering and Technology,4(4),pp. 25-26.
- 12. Ventura, F., Pisa, P.R. and Ardizzoni. (2002): Temperature and Precipitation trends in
 Balogna (Italy). Atmospheric research Journal, 61(3), pp. 203-214.
- 293
- 294