Original Research Article

Static Mantle Density Distribution 1 Equation

3

1

2

4

5 **Abstract:**

The study of mantle distribution does relate to the reflecting of seismic 6 waves, and has important meaning. Using Archimedes Principle of Sink 7 or Buoyancy (APSB), Newton's gravitation, buoyancy, lateral buoyancy, 8 9 centrifugal force and the Principle of Minimum Potential Energy (PMPE), we derive equation of static mantle density distribution. It is a 10 set of double-integral equations of Volterra/Fredholm type. Some new 11 results are: (1) The mantle is divorced into sink zone, neural zone and 12 buoyed zone. The sink zone is located in a region with boundaries of a 13 inclined line, with angle $\alpha_1 = 35^{\circ}15'$, apex at O(0, 0, 0) revolving 14 around the z-axis, inside the crust involving the equator. The buoyed zone 15 16 is located in the remainder part, inside the crust involving poles. The neural zone is the boundary between the buoyed and sink zones. The 17 18 shape of core (in sink zone) is not a sphere. (2) The Potential energy inside the Earth is calculated by Newton's gravity, buoyancy, centrifugal 19 force and lateral buoyancy. (3) The gravitational acceleration above/on 20 21 the crust is tested by formula with two parameters reflecting gravity and

centrifugal force, and the phenomenon of "heavier substance sinks down
in vertical direction due to attraction force, and moves towards to edges
in horizontal direction due to centrifugal force" is tested by a cup of
stirring coffee.

Key Words: Structure of the Earth, Newton Gravity, Archimedes
buoyancy, lateral buoyancy, Potential energy, Principle of minimum
potential energy, Lagrange multipliers .

29 **1.Introduction**

30 Although there are many researches and books on Earth structure, e.g.,

[1-5], etc. However, most studies focus on physical and chemistry properties, dynamic analysis. Seldom paper on study of mantle distribution has been found. The study of mantle distribution does relate to the reflecting of seismic waves, and has important meaning. For example, a recent paper [6] shows that the energy release of earthquake proportions to the square of Earth rotation velocity, and the calculation of energy release relates to seismic waves.

We study mantle density distribution in three steps, first, to derive an equation of static mantle distribution; second, to solve the equation; third, to apply the solution to crust loading analysis. The aim of this paper is to derive equation of static mantle density distribution. In order to derive the equation, at first, we state the basic hypotheses in sub-section 2.1.

43 Then the method and theory/calculation are introduced in the remaining 44 part of section 2. Where the Newton's law of universal gravitation, the Archimedes Principle of buoyancy, the lateral buoyancy are introduced 45 in sub-section 2.2, 2.3 and 2.4 respectively. The potential energy plays an 46 47 important role for finding the correct or real mantle distribution (subsection 2.5). A car or a ship to be in a stable equilibrium must be 48 designed that heavier materials put as lower as possible. Similarly, the 49 Earth with hypotheses symmetric with the z-axis and equatorial plane to 50 be in stable equilibrium, it must be that heavier mantle is distributed 51 lower (due to gravity) and outer (due to centrifugal force). The stable 52 equilibrium obeys the Principle of minimum potential energy (sub-section 53 54 2.7).

The Newton's law of universal gravitation is a part of classical mechanics 55 and has basic importance for wide fields, especially in astronomy and 56 gravity. According to Newton's gravity, all objects with mass above on 57 58 crust are attracted to the ground no matted on large or small size of mass. However, the Newton's law of universal gravitation does not consider 59 the effect of environmental factors (such as media, temperature, 60 **pressure, motion, etc.) between the masses**. For the case of masses 61 62 immersed in a fluid media, **buoyancy against gravity**, it puts lighter 63 object up. Which reveals that the up or down of the object depends on

64	the resultant force of attraction and buoyancy. Which is summarized as
65	"Archimedes' principle of sink or buoy" (APSB) . The buoyancy has the
66	same important as gravity in the study of Earth, which is emphasized in
67	[7]. If only attraction force exists, then, all objects are attracted to the
68	ground, the Earth becomes death. Since the buoyancy exists, as an oppose
69	force, it keeps the system to equilibrium. The Earth being a planet with
70	life is relying on the gravity force and buoyancy force, the later makes
71	cycles of water to evaporation to cloud, cloud to water droplet, and water
72	droplet to rain. The cycle brings water to everywhere on Earth to keep life
73	existence.
74	Using APSB, Newton's universal gravitation, buoyancy, lateral buoyancy,
75	centrifugal force and PMPE, we derive equation of static mantle density
76	distribution. It is a set of double-integral equations of Volterra/ Fredholm
77	type . We test gravitational acceleration above/on the crust by formula
78	with two parameters reflecting gravity and centrifugal force,; and also test
79	the phenomenon of "heavier substance sinks down in vertical direction
80	due to attraction force, and moves towards to edges in horizontal
81	direction due to centrifugal force" by a cup of stirring coffee.
82	2. Method/Material, Theory/Calculation
83	2.1 Basic hypotheses, coordinates and study range
84	(1) The Earth is assumed to be an ellipsoid with equator radius R_e and

85 pole radius R_p:

86
$$\left(\frac{\mathrm{r}}{\mathrm{R}_{\mathrm{e}}}\right)^2 + \left(\frac{\mathrm{z}}{\mathrm{R}_{\mathrm{p}}}\right)^2 = 1,$$
 (2.1-1)

87 (2)Mantle masses are co-here with continuously, fully filled, z-axial88 symmetry and equatorial-plane-symmetry distributed incompressible
89 non-isotropic liquid medium masses.

Notation: The **bold face** denotes **vector.** $A \coloneqq \{B|C\}$ means A is defined

- 91 by B with property C.
- 92 Let (x, y, z) be the Cartesian coordinates of the geometrical center of the
- Earth with origin O(0, 0, 0). The coordinates (x, y, z) is chosen that the z-
- axes is perpendicular to the equatorial plane xOy with z = 0 at xOy.
- 95 Cylindrical coordinates
- ⁹⁶ Let (r, θ, z) be the cylindrical coordinates of the geometric center of the
- 97 Earth. The relation between (x, y) and (r, θ) is:
- 98 $\begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \end{cases} (0 \le \theta \le 2\pi, \ 0 \le r < \infty, -\infty < z < \infty)$ (2.1-2)
- 99 (i, j, k) and $(\mathbf{e}_r, \mathbf{e}_{\theta}, \mathbf{k})$ denote the unit vectors of Cartesian and
- 100 cylindrical coordinates respectively. By hypotheses 2, a point $f(r, \theta, z)$
- independents to θ and can be simplified by f(r, z). In the following, we
- 102 discuss only the super semi-sphere $z \ge 0$.
- 103 We study the **static stable equilibrium system**.
- 104 2.2 Newton's law of universal gravitation, and acceleration
- 105 The Newton's law of universal gravitation of vector form is:

106
$$\mathbf{F}_{fg} = -G \frac{m_f m_g}{|\mathbf{h}_{gf}|^2} \mathbf{h}_{gf} = -G \frac{m_f m_g}{|\mathbf{h}_{gf}|^2} (\mathbf{h}_g - \mathbf{h}_f),$$
 (2.2-1)

Where \mathbf{F}_{fg} is the force applied on point mass f exerted by point mass g, its 107 direction is that from f towards to g; gravitational constant $G = 6.674 \times$ 108 10^{-11} , N. $(\frac{m}{kg})^2$; m_f and m_g are masses of center at points f and g 109 110 respectively; $|\mathbf{h}_{fg}| = |\mathbf{h}_{g} - \mathbf{h}_{f}| = \left| \sqrt{(\mathbf{x}_{g} - \mathbf{x}_{f})^{2} + (\mathbf{y}_{g} - \mathbf{y}_{f})^{2} + (\mathbf{z}_{g} - \mathbf{z}_{f})^{2}} \right|,$ (2.2-2) 111 $|\mathbf{h}_{fg}|$ is the distance between points f and g; \mathbf{h}_{f} and \mathbf{h}_{g} are vectors from 112 O(0, 0, 0) to point f and g, respectively; 113 $\mathbf{h}_{gf} \coloneqq \frac{\mathbf{h}_f - \mathbf{h}_g}{|\mathbf{h}_f - \mathbf{h}_g|}$ is the **unit vector** from point g to f. 114 Or, \mathbf{F}_{fg} is expressed in cylindrical components form: 115 $\mathbf{F}_{\rm fg} = \mathbf{F}_{\rm rfg} \mathbf{e}_{\rm r} + \mathbf{F}_{\rm zfg} \mathbf{k},$ 116 (2.2-3) $F_{\rm rfg} = G \frac{m_f m_g}{H} (r_f - r_g),$ 117 (2.2-4) $F_{zfg} = G \frac{m_f m_g}{H} (z_f - z_g),$ 118 (2.2-5) $H = \left| \left(r_{f} - r_{g} \right)^{2} + \left(z_{f} - z_{g} \right)^{2} \right|^{3/2},$ 119 (2.2-6)**Remark 2.1** The Newton's law of universal gravitation used for masses 120 121 group f and g, needs no overlap or intersection of these two groups, i.e., $m_f \cap m_g = \emptyset$ (null set). 122 2.3 Buoyancy. 123

125 partly, immersed in a fluid, is buoyed by a force equal to the weight of

Archimedes's principle of buoyancy states that any object, wholly or

126 the fluid displaced by the object.

124

127(1) The components of buoyancy
$$\mathbf{F}_{buofz}$$
 in z-axis can be defined by128Newton's second law, i.e., by (2.2-5),129 $\mathbf{F}_{buofz} \coloneqq -\mathbf{m}_{medf} \mathbf{a}_z = -\rho_{medf} \mathbf{a}_z d\mathbf{v} = -G \frac{\mathbf{m}_{medf} \mathbf{m}_g}{H} (\mathbf{z}_f - \mathbf{z}_g),$ (2.3-1)130Where \mathbf{a}_z is the component of acceleration in z-axis; ρ_{medf} is the density131of mass (mass per unit volume) of the media at $f(\mathbf{r}, \mathbf{z})$; $d\mathbf{v} = rd\theta drdz$;132 $\mathbf{m}_{medf} = \rho_{medf} d\mathbf{v}; \mathbf{m}_f = \rho_f d\mathbf{v}.$ The substance of \mathbf{m}_{medf} must be liquid,133while the substance of \mathbf{m}_f could be gas, liquid or solid. The minus sign134means the direction of buoyancy is opposed to the attraction force.135(2) \mathbf{F}_{buofz} can also be defined by Archimedes' principle, i.e.,136 $\mathbf{F}_{buofz}(\mathbf{z}) = -\mathbf{K}_z(\mathbf{z} - \mathbf{z}_0),$ (2.3-2)137Eq. (2.3-2) means that buoyancy \mathbf{F}_{buofz} is proportioned to the immersed138depth $(\mathbf{z} - \mathbf{z}_0)$ of the object at $f(\mathbf{r}, \mathbf{z}), \mathbf{z}_0$ is the depth where139 $\mathbf{F}_{buofz}(\mathbf{z}_0) = 0.$ $\mathbf{K}_z > 0$ is a constant. The minus sign shows the direction140of buoyancy is opposed to the direction of attracted force. Obviously,141 $\mathbf{z}_0 = 0$, since by hypotheses of symmetry, there is no attraction force at142 $O(0,0,0)$, thus, there is also no buoyancy.143Have:144have:145 $\mathbf{K}_z = G \frac{\mathbf{m}_{medr} \mathbf{m}_g}{\mathbf{H}},$ (2.3-3)146 $\mathbf{z}_f - \mathbf{z}_g = (\mathbf{z} - \mathbf{z}_0) = \mathbf{z},$ (2.3-4)

147 According to Archimedes's Principle of Sink or Buoy (APSB), there
148 are three zones inside the Earth:

The sink zone, SIN:= $\{\aleph_s | \rho_f > \rho_{medf}\}$, heavier substance sinks down 149 150 in vertical direction due to attraction force, and moves towards to 151 edges in horizontal direction due to centrifugal force. The neural zone, NEU:= $\{\aleph_n | \rho_f = \rho_{medf}\}$, 152 The buoyancy zone, BUO:= $\{\aleph_b | \rho_f < \rho_{medf}\}$, lighter substance buoyed 153 up in vertical direction due to buoyancy, and moves to the z-axis due 154 155 to lateral buoyancy. 2.4 Extension the Archimedes' principle of buoyancy to lateral 156 buoyancy. 157 158 The buoyancy is firstly extended to lateral buoyancy, by logical deduction, which assumes that a rule suits for the z-axis, it is also suited 159 for x-axis and y-axis [7]. Similar to (2.3-1) and (2.3-2), we have: 160 $F_{buofr} = -m_{medf}a_r = -K_r(r - r_0),$ 161 (2.4-1)Where $r_0 = 0$, and $F_{buofr}(r_0) = 0$. Similar to (2.3-3) and (2.3-4), we 162 have: 163 $K_r = G \frac{m_{medf}m_g}{H},$ 164 (2.4-2) $r_f - r_g = r$, 165 (2.4-3)166 **2.5** Angular velocity of a point of mantle due to Earth rotation. 167 **Proposition:** the angular velocity of a point of mantle equals that of crust. **Proof:** Suppose that the angular velocity ω_N of a point N(r, 0, z) of 168

169 mantle is different to that ω_c of a point C(r+dr, 0, z) of crust, say,

170 $\omega_{C} > \omega_{N}$, then, a friction force $F_{friction}$ exists between C(r+dr, 0, z) and

- 171 N(r, 0, z), such that $F_{friction}$ blocks ω_C meanwhile drags ω_N , until
- 172 $\omega_{\rm C} = \omega_{\rm N}$. Similarly, the rotating angular velocity of a point of mantle is

173 equal to that of its neighborhood.

174 **2.6 Potential energy inside the Earth**

- 175 Potential energy is known as the capacity of doing work due to an
- 176 object's position static changing (with zero acceleration, because the
- 177 work done by acceleration is calculated in kinetic energy). If a work w,
- done by a force **F**, moved from point f(r, z) to point $g(r_g, z_g)$, then, it is
- 179 calculated by

180
$$w = \int_{f}^{g} F \cdot ds = \Delta E_{p} = E_{p}(g) - E_{p}(f),$$
 (2.6-1)

181 Where ΔE_p denotes the change of potential energy; ds is the change of 182 position vector $\mathbf{s} = \mathbf{s}[\mathbf{r}(t), \mathbf{z}(t)] = \mathbf{s}_r(t)\mathbf{e}_r + \mathbf{s}_z(t)\mathbf{k}$, in cylindrical form is:

183
$$d\mathbf{s} = \frac{\partial \mathbf{s}}{\partial t} dt = \left[\frac{\partial \mathbf{s}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial t} + \frac{\partial \mathbf{s}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial t}\right] dt = \left[\mathbf{s}_{\mathbf{r}}' \dot{\mathbf{r}} + \mathbf{s}_{\mathbf{z}}' \dot{\mathbf{z}}\right] dt, \qquad (2.6-2)$$

184 where
$$\dot{s_r} = \frac{\partial S}{\partial r}$$
, $\dot{r} = \frac{\partial r}{\partial t}$, $\dot{s_z} = \frac{\partial S}{\partial z}$, $\dot{z} = \frac{\partial z}{\partial t}$, (2.6-3)

185 Force F in cylindrical form is :

186
$$\mathbf{F} = \mathbf{F}_{\mathbf{r}} \mathbf{e}_{\mathbf{r}} + \mathbf{F}_{\mathbf{z}} \mathbf{k}, \qquad (2.6-4)$$

- 187 Eq. (2.6-1) is a form of vector integration, and is now expanded to
- 188 cylindrical scalar form:

189
$$W = \int_{f}^{g} (C_{r}F_{r}\dot{s}_{r} + C_{z}F_{z}\dot{s}_{z})dt,$$
 (2.6-5)

190 where
$$C_r = \frac{\partial r}{\partial t} = \text{const}$$
; $C_z = \frac{\partial z}{\partial t} = \text{const}$; $s'_r = \frac{\partial s_r}{\partial r}$; $s'_z = \frac{\partial s_z}{\partial z}$; F_r and F_z

191 are components of \mathbf{F} .

192 **2.6.1 The incompressible fluid**

193 The incompressible fluid equation is expressed by:

194
$$\frac{\partial \dot{s_x}}{\partial x} + \frac{\partial \dot{s_y}}{\partial y} + \frac{\partial \dot{s_z}}{\partial z} = 0,$$
 (2.6-6)

- 195 Where the sum of components of line strain (represents the changing rate
- 196 of volume) is zero, i.e., the volume of liquid is incompressible. For non-
- 197 isotropic liquid, incompressibility is independence in any direction, then

198
$$(2.6-6)$$
 becomes:

199
$$\frac{\partial \dot{s}_x}{\partial x} = \frac{\partial \dot{s}_y}{\partial y} = \frac{\partial \dot{s}_z}{\partial z} = \frac{\partial \dot{s}_r}{\partial r} = 0.$$
 (2.6-7)

200 **2.6.2 The non-isotropic material**

- 201 The non-isotropic mantle means its constants C_r, C_z ; and K_r, K_z are
- independent with each other, as well as r, z. That is :

203
$$\frac{\partial C_r}{\partial z} = \frac{\partial C_z}{\partial r} = 0,$$
 (2.6-8)

204
$$\frac{\partial K_r}{\partial z} = \frac{\partial K_z}{\partial r} = 0,$$
 (2.6-9)

205

206 2.6.3 Work done by gravity, buoyancy, lateral buoyancy and

207 centrifugal force, for m_f and m_{medf} moving from f(r, z) to O(0, 0, 0)

The general component form of work done by multi-forces moving from f(r, z) to O(0,0,0) is:

210
$$w = \int_{f(t_1)}^{O(t_2)} \{ \sum C_r F_r \dot{s_r} + \sum C_z F_z \dot{s_z} \} dt = E_p, \qquad (2.6-10)$$

211 where the x under the $\sum x$ sign are each terms of the force components.

For the work done by multi-forces, there are two possibilities that the

total work is strengthen or weaken shown by sign \mp . By hypotheses 2,

214 O(0,0,0) is the center of many masses, e.g., M_s , M_b , and M_E , the mass of

SIN zone, the mass of BUO zone and mass of the Earth, respectively,

- therefore we use O(0,0,0) to replace $g(r_g, z_g)$.
- 217 Substituting (2.2-3), (2.2-4) and (2.2-5) into (2.6-5), for the sink zone,
- 218 we have

219
$$w = (m_{f} - m_{medf}) \int_{f}^{0} \{G \frac{M_{b}}{H} [C_{r} r \dot{s}_{r} + C_{z} z \dot{s}_{z}] \mp \omega_{c}^{2} [C_{r} r \dot{s}_{r}] \} dt = -E_{p}(f),$$
220
221
$$E_{p}(0) = 0,$$
(2.6-12)

- 222 2.7 Principle of Minimum Potential Energy (PMPE)
- The PMPE states that the necessary and sufficient conditions of a systemin stable equilibrium is its potential energy at minimum.
- 225 The actually distributed mantle density must be that which makes the
- potential energy to be minimum. The sufficient condition is trivial, we
- 227 focus on necessary condition.
- 228 **In the SIN zone**, by (2.6-11), we have

 $\min_{m_f, m_{medf}, r, z} - E_p(m_f, m_{medf}, r, z)$

$$= (m_f - m_{medf}) \int_f^o \{-G \frac{M_b}{H} [C_r r \dot{s_r} + C_z z \dot{s_z}] \neq$$

229
$$\omega_{\rm c}^2[{\rm C}_{\rm r} {\rm r} {\rm s}_{\rm r}^r]$$
}dt, (2.7-1)

230 Subject to
$$\int_0^{V_s} (\rho_f + \rho_{medf}) dv_s = M_s = \rho_{ms} V_s,$$
 (2.7-2)

231
$$\rho_{\rm ms} = \frac{M_{\rm s}}{V_{\rm s}},$$
 (2.7-3)

Where $dv_s = rd\theta drdz$; ρ_{ms} , $M_s = M_s(V_s)$ and V_s are the mean density, 232 mass and volume of SIN zone respectively. Here, $E_p(m_f, m_{medf}, r, z)$ is 233 defined as the function of four independent variables. M_s is a function of 234 Vs. 235 **Remark 2.2** Since f(r,z), the location of m_f and m_{medf} in SIN zone, 236 237 overlays with the location of mass group M_s, while M_b has no overlay with f(r,z), therefore M_b is used instead of M_s shown in (2.6-11). 238 $M_b = M_b(V_b)$ is a function of V_b . 239 Eq. (2.7-1) and (2.7-2) forms a constraint optimization problem. Using 240 Lagrange multipliers method to transform it to un-constraint optimization 241 problem [8]. Construct a new function Y, 242 $Y = E_p(m_f, m_{medf}, r, z) + K[\int_0^{V_s} (\rho_f + \rho_{medf}) dv_s - M_s],$ (2.7-4)243 The necessary condition of Y to be minimum are: 244 $\frac{\partial Y}{\partial m_f} = 0,$ (2.7-5)245

246
$$\frac{\partial Y}{\partial m_{\text{medf}}} = 0,$$
 (2.7-6)

247
$$\frac{\partial Y}{\partial z} = \frac{\partial E_p}{\partial z} = 0,$$
 (2.7-7)

248
$$\frac{\partial Y}{\partial r} = \frac{\partial E_p}{\partial r} = 0,$$
 (2.7-8)

- Adding (2.7-5) and (2.7-6), we get k = 0.
- 250 Subtracting (2.7-6) and (2.7-5), we have

251
$$\int_{f}^{O} \left\{ -G \frac{M_{b}}{H} [C_{r} r \dot{s_{r}} + C_{z} z \dot{s_{z}}] \mp \omega_{c}^{2} (C_{r} r \dot{s_{r}}) \right\} dt = 0, \qquad (2.7-9)$$

252 Since $f(r, \theta, z)$ can be arbitrary chosen, by Newton-Leibniz formula, the

integrand of (2.7-9) must be zero, we have:

254
$$M_b = \mp \frac{\omega_c^2}{G} H \frac{(C_r r s_r)}{(C_r r s_r + C_z z s_z)} = \mp \frac{\omega_c^2}{G} H \left(1 + \frac{C_z z}{C_r r} \frac{s_r}{s_r}\right)^{-1} = \mp \frac{\omega_c^2}{G} H,$$
 (2.7-10)
255 $H = [r^2 + z^2]^{3/2},$ (2.7-11)
266 Eq. (2.7-7) gives:
257 $r^2 + z^2 = 3z \frac{C_r r s_r + C_z z s_z}{C_z (s_z + z \frac{\partial s_z}{\partial z})} = 3z \left(z + \frac{C_r}{C_z} \frac{r s_r}{s_z}\right),$ (2.7-12)
258 Where $\frac{\partial s_r}{\partial z} = \frac{\partial^2 s_r}{\partial z \partial a_r}$ = shearing strain = 0, because liquid can not
259 resistance skew strain (shearing strain). And $\frac{s_r}{s_z} = \frac{\partial s}{\partial r} \frac{\partial z}{\partial s} = \frac{\partial z}{\partial r} = 0.$
260 Therefore (2.7-12) becomes:
261 $r^2 - 2z^2 = 0,$ (2.7-13)
262 The solutions of (2.7-13) are: $r_{1,2} = \mp \sqrt{2}z_1.$
263 $r_1 = r_2 = \sqrt{2}z_1,$ (2.7-14)
264 $\tan \alpha_1 = \frac{z_1}{r_1} = \frac{1}{\sqrt{2}}, \alpha_1 = 35^{\circ}15',$ (2.7-15)
265 Substituting (2.7-14) into (2.7-10), we have
266 $M_b(V_b) = \frac{\omega \xi}{G} [3z_1^{2]3/2} = 3\sqrt{3} \frac{\omega \xi}{G} (z_1)^3 = \rho_{mb}V_b,$ (2.7-16)
267 Where $\rho_{mb} = 3\sqrt{3} \frac{\omega \xi}{G}$ is the mean value of density of BUO zone.
268
269 Eq. (2.7-8) gives:
270 $M_b = \mp \frac{\omega \xi}{G} H \frac{C_r (s_r + r \frac{\partial s_r}{\partial r})}{C_r (s_r + r \frac{\partial s_r}{\partial r}) - 3r(r^2 + z^2)^{-1} (C_r r s_r + C_z z s_z)},$ (2.7-17)
271 Where $\frac{\partial s_z}{\partial r} = \frac{\partial^2 s_z}{\partial r \partial z} = 0,$ and $\frac{s_z}{s_r} = 0,$ then (2.7-17) becomes:
272 $M_b = \mp \frac{\omega \xi}{G} H \frac{1}{1 - 3r^2 (r^2 + z^2)^{-1}} = 1,$
275 $1 - 3r^2 (r^2 + z^2)^{-1} = 1,$
276 Or $r = 0,$ and $z = 0,$ (2.7-19)

)

277 Second, we use " - " sign, we have

278
$$1 - 3r^2(r^2 + z^2)^{-1} = -1,$$

279 Or $r^2 = 2z^2,$ (2.7-20)

- Eq. (2.7-20) is the same as (2.7-13), thus its solution is the same as (2.7-13)
- 281 15), i.e.,
- 282 $r_1 = \sqrt{2}z_1,$ (2.7-21)
- Now, all the necessary conditions (2.7-5) ---(2.7-8) are satisfied by (2.7-
- 284 10), (2.7-15), and (2.7-19) or (2.7-21).
- Eq. (2.7-19) means only one point (r, z) = (0, 0) satisfies all necessary
- conditions, while (2.7-21) means points in a line with $\alpha_1 = 35^{\circ}15'$ satisfy

all necessary conditions. Now, we summarize the SIN zone, which is

located inside the line with inclined angle $\alpha_1 = 35^{\circ}15'$ and inside the

289 crust including equator, i, e.,

290
$$[r \ge (\tan \alpha_1)z] \cap \left[\frac{r^2}{R_e^2} + \frac{z^2}{R_p^2} \le 1\right].$$

- In NEU zone, $m_f = m_{medf}$. The boundary of NEU zone is determined by
- equilibrium equations at any point (r_n, z_n) on the boundary of NEU.

293
$$\sum F_z = F_{attz} + F_{buofz} = 0,$$
 (2.7-22)

294
$$\sum F_r = F_{attr} + F_{buofr} = 0,$$
 (2.7-23)

- However, since $m_f = m_{medf}$, we can not calculation terms in (2.7-22)
- and (2.7-23) by (2.6-11). The boundary of NEU can be determined by
- 297 (2.7-15). The reason will be given in discussion section.
- 298 In BUO zone, $\rho_{medf} > \rho_f$, by (2.6-11), we have

$$\begin{split} & \min_{m_f, M_{medf}, r, z) = (m_{medf} - m_f) \int_f^0 \{-G\frac{M_s}{H} [C_r r s'_r + \\ & 0 Czzsz \mp \omega c2 Cr sr \} dt, \\ & (2.7-24) \\ & 30 Subject to \int_0^{V_b} (\rho_f + \rho_{medf}) dv_b = M_b = \rho_{mb} V_b, \\ & (2.7-25) \\ & Eq. (2.7-24) and (2.7-25) forms a constraint optimization problem. Note \\ & 30 that (2.7-24) and (2.7-25) are the same as (2.7-1) and (2.7-2), if $V_s, M_s \\ & are replaced by V_b, M_b, respectively. Therefore, the solution of (2.7-24) \\ & and (2.7-25) is the same as (2.7-15) with V_b, M_b instead of $V_{s'}, M_s. \\ & are replaced by V_b, M_b, respectively. Therefore, the solution of (2.7-24) \\ & and (2.7-25) is the same as (2.7-15) with V_b, M_b instead of $V_{s'}, M_s. \\ & The BUO zone is located in the remainder part off the SIN zone, i.e., \\ & [r \leq (\tan \alpha_1)z] \cap \left[\left(\frac{r}{R_e} \right)^2 + \left(\frac{z}{R_p} \right)^2 \leq 1 \right], and inside the crust including \\ & poles. \\ & 0 \\ & 2.8 Equation of static mantle density distribution \\ & In SIN zone, \int_0^{V_s} (\rho_{sf} + \rho_{smedf}) dv_s = M_s, \\ & (2.8-1) \\ & In BUO zone: \int_0^{V_b} (\rho_{bf} + \rho_{bmedf}) dv_b = M_b, \\ & (2.8-2) \\ & M_s + M_b = M_E, \\ & (2.8-3) \\ & 11 \\ & Eq. (2.8-4) is a set integral equations of static mantle density distribution \\ & 3.1 Why the boundary of the NEU zone can be expressed by (2.7-15)? \\ & The boundary of NEU zone is determined by equilibrium equations at \\ & any point (r_n, z_n) on the boundary of NEU. However, we can not \\ & establish the equilibrium equations (2.7-22) and (2.7-23) by (2.6-11), \\ & since m_f = m_{medf}$ in NEU zone. \\ \end{array}$$$$

321	Now, we prove the following equivalences:	
322	$\frac{\partial E_{p}}{\partial z} = 0 \longleftrightarrow \sum F_{z} = 0,$	(3-1)
323	$\frac{\partial E_{p}}{\partial r} = 0 \longleftrightarrow \sum F_{r} = 0,$	(3-2)
324	Proof : By (2.6-10), we have	
325	$\frac{\partial E_p}{\partial z} = \frac{\partial \int_f^0 \sum F_z C_z s'_z dt}{\partial z} = \sum F_z \frac{\partial}{\partial z} \int_f^O C_z s'_z dt = \sum F_z \frac{\partial}{\partial z} C_z \int_f^O dt = \sum$	$F_z = 0$,
326		(3-3)
327	Where $s_z = z$, $\dot{s_z} = \frac{\partial s_z}{\partial z} = 1$, $C_z = \frac{dz}{dt} = \text{const.}$	
328	Eq.(3-3) shows that (3-1) holds. Similarly, (3-2) also holds.	
329	Therefore, (2.7-7) and (2.7-8) can represent (2.7-22) and (2.7-23))
330	respectively. The solution (2.7-15) satisfies both (2.7-7) and (2.7-15)	.7-8),
331	therefore it can represent the boundary equation of NEU zone.	
332	3.2 Why we say the core is not a sphere?	
333	The sink zone is located inside a line with inclined angle $\alpha_1 = 3$	35°15′
334	revolving around the z-axis and including equator, the core (insi	de SIN
335	zone) is obviously not a sphere, due to rotation of Earth.	
336	3.3 Can we check "heavier substance sinks down in vertical dim	rection
337	due to attraction force, and moves towards to edges in horizonta	ıl
338	direction due to centrifugal force" on/above crust?.	
339	One can check this phenomenon by a cup of stirring coffee. On	e can see
340	that heavier substance sinks down in vertical direction due to at	traction
341	force, and moves towards to edges in horizontal direction due to	
342	centrifugal force; while lighter substance (cream) buoyed up and	l moves
343	towards to central.	

4.Test of result on/above crust by formula with G and ω_c^2 . 344 345 Using spherical Earth model, the resultant force of gravitation and 346 centrifugal force of a point-mass m in position $P(r, \theta, z)$ above/on crust is: $\mathbf{F} = -G \frac{mM_E}{R^2} \frac{\mathbf{r}_P}{|\mathbf{r}_P|} + m\omega_c^2 r \mathbf{e}_r = m\mathbf{g},$ 347 (4-1)Where the mean radius of Earth R = 6.371,032 km; $\mathbf{r}_{\rm P}$ is a vector from 348 $O(0,\theta, 0)$ to $P(r,\theta,z)$; \mathbf{e}_r is an unit vector of cylindrical coordinates. 349 $r = R \sin \alpha$, (4-2)350 α is the latitude. Substituting (4-2) into (4-1), we have 351 $\mathbf{g} = -G \frac{M_E}{R^2} \frac{\mathbf{r}_P}{|\mathbf{r}_P|} + \omega_c^2 R \sin \alpha \, \mathbf{e}_r,$ (4-3)352 Where the mass of Earth $M_E = 5.976 \times 10^{21}$ kg, $G = 6.674 \times 10^{21}$ 353 10^{-11} , N. $(\frac{m}{kg})^2$. 354 Example: $\alpha = 0$, $g_{pole} = -G \frac{M}{R^2} = -6.674 \times 10^{11} \times \frac{5.976 \times 10^{21}}{(6.371)^2 \times 10^{12}} =$ 355 $-9.826(m. s^{-2}),$ 356 (4-4)Comparing with $g_{pole} = -9.8325$ (m. s⁻²), error $\varepsilon = 0.0006610$. 357 Example: $\alpha = \pi/2$, 358 $g_{equator} = -G \frac{M}{R^2} + \omega_c^2 R = -9.48907 (m. s^{-2}),$ 359 (4-5)Comparing with $g_{equator} = -9.78049 \text{ (m. s}^{-2}\text{)}$, error $\varepsilon = 0.029796$. 360 5. Conclusion 361 362 (1). Heavier substance sinks down, while lighter substance buoyed up, caused by gravity and buoyancy; Heavier substance moves towards to 363 edge, while lighter substance moves towards to central, caused by 364

365	centrifugal force and lateral buoyancy due to Earth's rotation. The mantle
366	mass density is so distributed, based on the principle of minimum
367	potential energy, that makes the Earth to be in a stable equilibrium. The
368	potential energy is calculated by Newton's gravity, Archimedes
369	buoyancy, centrifugal force and lateral buoyancy. The mantle is divorced
370	into sink zone, neural zone and buoyed zone. The sink zone is located in
371	a region with boundaries of a straight line, $r = (\tan \alpha_1)z$, $\alpha_1 =$
372	$35^{\circ}14'$, apex at O(0,0,0), revolving around the z-axis, inside the crust
373	involving the equator. The buoyed zone is located in the remainder part,
374	inside the crust involving poles. The neural zone is the boundary between
375	the buoyed and sink zones.
376	The shape of core (inside sink zone) is not a sphere.
377	(2). An integral equation of mantle density distribution is derived by
378	APSB, gravitation, buoyancy, lateral buoyancy, centrifugal force and
379	PMPE. It is a set of double-integral equations of Volterra / Fredholm

- 380 type.
- 381 (3).Potential energy inside the Earth is calculated by Newton's gravity,
- buoyancy, centrifugal force and lateral buoyancy.

383 **References**

384

Ben A. Ven Der Pluijm. Earth structure An introduction to structural
 Geology and Tectonics [electronic resource], *wwNorton & Co.*

387 388	<i>INC(NP)</i> ,2003. <u>http://trove.nia.gov.au/version/208032980</u> ISBN: 039392467x9780393924671
389	2. Braile , L. 3-D Earth structure model-Purdue University Interpreting
390	Seismograms –A Tutorial for the As-1 seismograh ¹ , 2006.
391	http://web.ics.purdue.edu/ ~ braile
392	3. Carision, R. W. The mantle and core, (1 st edition, Treatise on
393	Geochemistry, 2 nd edition, Volume 2, <i>Elsevier Science</i> .2005.
394	Editorial group. (1979). Mathematical Hand Book, High Educational
395	Publishers, Beijing. P.88,965. (in Chinese)
396	4. Gurnis, M. Michael, Wysession, E. Knittle, E. Bruce, A. and Buffett
397	(editors). The core-mantle boundary region, Geodynamic series Vol.
398	28, American Geophysical Union, Wasington D.C. 1998. ISBN: 0-
399	87590-530-7
400	5. Romanowicz, B.A. Dziwonski. Seismology and structure of the Earth,
401	(1 st edition) <i>Elsevier</i> , 2009. eBook ISBN: 9780444535757.
402	6. Yun, T.Q. Earthquake fastens Earth rotation. Asian Journal of
403	Geological Research, 2019: 2(1), 1-9. Article No. AJOGER.49457.
404	7. Yun, T. Q, New Dynamic Equations of Aerosol in Air of Certain Type,
405	Atmospheric and Climate Science, 2017: 7(4), 511 – 524. DOI:
406	10.4236/acs.2017.74037.
407	8. Editorial Group. Mathematical Hand Book. High Educational
408	Publishers, Beijing, 1979. 88, 965 (in Chinese). END