1 Comparison of Anxiolytic Effect of Aqueous Extract of Root of Valeriana

officinalis with Buspirone in Mature Male Mice

Abstract

Background: Anxiety is the most common psychiatric disorder which can be cured by herbal and chemical medicine. Herbal medicine and complementary medicine are widely used among people suffering from anxiety disorder. *Valeriana officinalis* known to cause anxiolytic and sedative effects to have a special place in traditional Chinese, Indian and Iranian medicine.

Aims: This study aims to compare the anxiolytic effect of aqueous extract of root of *V. officinalis* root with Buspirone in mature male mice.

Study design: Study was conducted in the Islamic Azad University of Mashhad to an animal room of the Faculty of Basic Sciences, Azad University of Nishabur, under standard conditions. This experimental study has been demonstrated by control and experimental groups. The sample consisted of 30 mature male mice assigned into five groups of six: group A receiving distilled water (control group), group B, group C and group D receiving 100 mg/kg, 200 mg/kg and 300 mg/kg aqueous extract of *V. officinalis*, respectively, and group E receiving 30 mg/kg buspirone orally in drinking water. Anxiolytic effects were evaluated 10 days after receiving by using maze. One-way ANOVA and T-test were analyzed by using SPSS 19 software package.

 Results and discussion: The results show that the aqueous extract of *V. officinalis* root causes a significant increase in the number of arrivals and elapsed time in open arms compared to Buspirone. Medicinal plants currently form an important part of traditional medicine in many countries and they have a special place in new therapeutic approaches. ANOVA and T-test results showed a significant (P<0.05) relationship between the anxiolytic effect of aqueous extract of *V. officinalis* root and Buspirone in mice.

Conclusion: It can be concluded that *V. officinalis* are more effective in reducing anxiety compared to buspirone.

- 33 Keywords: Anxiolytic Effect, aqueous root extract, psychiatric disorder, Valeriana
- 34 officinalis, buspirone, mice

35 Introduction

- With the industrialization of countries, anxiety is currently rising in people. Anxiety disorders
- affect 40 million people in the United States (U.S.). It is the most common group of mental
- 38 illnesses in the country. However, only 36.9 percent of people with the condition receive
- 39 treatment. These changes include diffuse, unpleasant and vague feelings of panic, along with

autonomic symptoms such as confusion, sweating, diarrhoea, increased blood pressure, 40 41 palpitations, mydriasis, restlessness, tremor, increased heart rate, frequent urination, numbness 42 and syncope. Anxiety is considered a disorder when it occurs in situations where there is no real 43 risk or lasts more than usual after overcoming the risky situation [1]. 44 The American Psychological Association (APA) defines anxiety as "an emotion characterised by 45 feelings of tension, worried thoughts and physical changes like increased blood pressure." 46 Anxiety disorder is a mental state or severe arousal, the main characteristic of which is fear, 47 doubt and excessive worry. The characteristics of anxiety disorders are: the amount of fear more 48 than the risk, the person is constantly in a state of fear and concern without any specific cause, 49 there are chronic fear and concern and constantly afflicts the person to the extent that he cannot 50 live his everyday life [2]. 51 In other words, anxiety refers to a state of distress and unpleasant inner feeling, which appears on 52 physiological, psychological and cognitive levels and disrupts normal activities [3]. Biological 53 assumptions usually rely on objective criteria which compare brain function in patients with 54 anxiety disorder with normal people. It is believed that the state of anxiety increases the activity 55 of gamma-Aminobutyric acid (GABA), the main inhibitor of the brain. In emotional and anxiety 56 conditions, changes in limbic system function and activation of hypothalamic-pituitary axis is 57 followed by a change in the adrenal cortex of plasma level of glucocorticoid hormone. These 58 hormones can intervene in brain functions and produce the necessary responses to anxiety. On 59 the other hand, there are many pieces of evidence which suggest that different neurotransmitter 60 systems and neuronal circuits in brain regions, including the components of limbic system, play an important role in the mediation of anxiety behaviours [4]. There is a significant relationship 61 62 between the levels of GABA in the brain and anxiety, as benzodiazepine used as a sedative drug 63 for the past decades, emulates GABA [5]. Buspirone is not chemically and pharmaceutically similar to benzodiazepines, barbiturates and other sedative agents. Unlike benzodiazepine 64 65 sedatives, Buspirone has no effect on muscle relaxation and drowsiness. Buspirone is thought to have a strong tendency for serotonin receptors (5-HT1A), but it does not have a significant 66 67 tendency for benzodiazepine receptors. Buspirone also has a moderate tendency for brain 68 dopamine receptors (D2). 69 Medicinal herbs have been used for the treatment of diseases in humans. It is estimated that more 70 than 10% of thousands of well-known plant species have drug use. The World Health

71 Organization (WHO) estimates that about 80% of the world's population uses medicinal herbs 72 for aspects of their health care [6, 7]. Valeriana officinalis, scientifically called Nardostachy 73 *jatamansi*, belonging to the Valerianceae family, grows in temperate regions of the Northern 74 Hemisphere, including Iran [8]. 75 The roots and rhizomes of this plant are used in traditional medicine to treat various discomforts, 76 including neurological disorders such as epilepsy, insomnia (Valerian is most commonly used 77 for sleep disorders, especially the inability to sleep (insomnia), dizziness, palpitations, and 78 sedation [9]. Many compounds have been identified in the extract of this plant. The most 79 important of these are valproates, isovalproates and divalproates. Other components make up 80 only 0.4% of the extract. Recently, sedative effects of *V. officinalis* are attributed to its volatile 81 oils, including valerenal and valerenic acid. Sedative effects of *V. officinalis* have been noted in 82 the ancient Greek books, including Hippocrates and trials conducted confirm these effects; in 83 traditional medicine, the use of this plant dates back to thousands of years [8]. V. officinalis has 84 been known for its anticonvulsant, sedative, anti-hysteria, and palpitation reducing effects. In 85 1981, Dell Logia stated that root and rhizome extract of *N. jatamansi* had a weakening effect on 86 the mouse brain. Biochemical studies show that valerenic acid inhibits the enzyme responsible 87 for GABA catabolism and increases GABA concentration in the brain tissue. Increasing the 88 GABA concentration in the brain reduces the activity of various brain nuclei and causes sedative 89 effects [10]. In this regard, studies on experimental animals have shown that sedative and 90 anxiolytic effects of V. officinalis extract are due to compounds such as valerenic acid and 91 valepotriate; moreover, valerian extracts increase by GABA neurotransmitters in the brain. 92 GABA reduces the activity of the nervous system with its inhibitory effect, resulting in sedation, 93 anticonvulsant and anti-anxiety effects [11]. Buspirone is an anti-anxiety drug which has a high 94 tendency for serotonin receptor type (1 A) and a moderate effect on dopaminergic system and a 95 relative agonist effect on alpha-adrenergic receptors. 96 According to the studies on sedative effects of V. officinalis and taking steps to develop 97 utilization of medicinal plants with fewer complications for patients, and moreover, given the 98 need to introduce an agent which can be effectively used instead of or in combination with other 99 sedative drugs. The present study tends to test the relationship between anxiolytic effects of the 100 root of V. officinalis and buspirone administered in the treatment of anxiety. Studying the effect 101 of hydroalcoholic extract of *V. officinalis* on astrocyteos of hippocampus formations of Rats,

- Roozbehi et al. [12] concluded that this extracted compounds such as phenolic acid, esters,
- 103 flavonoids, monoterpenes and sesquiterpenes, and antioxidant properties can affect the
- extracellular neuronal environment and proliferate astrocyte cells.
- 105 Khajehpour et al. [13] studied adrenergic interference in anxiolytic effect of hydroalcoholic
- extract of V. officinalis root and showed that injection of this extract reduces anxiety behaviour
- by increasing the elapsed time percentage in the open arm and percentage of arrival into this arm.
- Moreover, injection of epinephrine prior to *V. officinalis* extract reduced its anxiolytic effect,
- while the same dose of epinephrine alone did not affect anxiety. As a result, it can be argued that
- central adrenergic mechanisms may be involved in the reduction of anxiety behaviours due to
- 111 hydroalcoholic extract of this plant.
- Ekbatani et al. [14] evaluated the effect of *V. officinalis* on sleep disorders in postmenopausal
- women and concluded that this herb could improve various areas of sleep disorders. Half of the
- postmenopausal women have sleeping problems which can lead to a decline in their quality of
- life. Meanwhile, herbal medicines positively affect six out of the seven areas of sleep disorder.
- For this reason, healthcare providers need to know this medicinal herb.
- 117 Kafash Elahi et al. [15] compared the weakening effects of the extract of V. officinalis root,
- diazepam and ketamine on central nervous system (CNS) in cat and reported that clinical signs
- of this extract depend on effects of substances on the activity of gamma aminobutyric acid or
- 120 GABA and its receptors. This confirms the weakening effect of this plant on central nervous
- 121 system.
- Gromball et al. [16] studied improvement in hyperactivity, concentration difficulties and
- impulsiveness during a seven-week treatment with valerian root and lemon balm extracts in
- primary school children. They concluded that this extract hopefully can lead to durable treatment
- in children. In addition, this method is very effective in improving the educational subject.
- 126 MinNam et al. [17] studied V. officinalis extract and its main component, valerenic acid,
- ameliorate D-galactose-induced reductions in memory, cell proliferation and neuroblast
- differentiation by reducing corticosterone levels and lipid peroxidation. V. officinalis is
- commonly used in traditional and herbal medicine in many cultures. It seems that *V. officinalis*
- 130 root extract and valerenic acid enhance cognitive function, promote cell proliferation and
- 131 neuroblast differentiation, and also decrease serum corticosterone and lipid peroxidation in
- elderly mice.

Evaluating the effectiveness of high valerenic acid and low acetoxy valerenic acid contents in reducing anxiolytic activity, Felgentreff et al. [18] concluded that this plant is widely used in the treatment of insomnia and anxiety and it is significantly effective in decreasing anxiolytic activities, and this effect is also more pronounced than valerenic acid.

Surajit et al. [19] evaluated effectiveness of *Valeriana wallichii* root extract in improving sleep quality and modulating brain monoamine levels in rats and showed that this extract can positively improve sleep quality on two levels of the brain, cortex and stem. This present study aims to compare the anxiolytic effect of aqueous extract of *Valeriana officinalis* root with Buspirone in mature male mice.

Materials and Methods

In this study, 30 mature male mice were randomly divided into 5 groups of 6. A total of 30 mature male mice with a weight range of 25-35 g were moved from Islamic Azad University of Mashhad to an animal room of the Faculty of Basic Sciences, Azad University of Nishabur, Northeast Iran, under standard conditions (Figure 1). The mice were kept under controlled light conditions (12 hours of light and 12 hours of darkness), 70% relative humidity and $22 \pm 3^{\circ}$ C for 10 days. Standard plates were used to feed the mice by sufficient mouse feed (Javaneh Khorasan Company) and drinking water.

Figure 1: animal room of the Faculty of Basic Sciences, Azad University of Nishabur

To make extracts, *V. officinalis* root was purchased from Apothicaire; genus and species were determined by the Department of Botany of the Faculty of Basic Sciences, Islamic Azad University of Neishabour. The plant was then powdered by an electric mill; 500 mg dry powder was moved to a 5000 ml beaker and soaked in 1 lit distilled water. It was incubated at 35°C for 72 h and stirred every day. Then, it was filtered by using filter paper and vacuum pump and Büchner funnel. The filtered liquid was poured into a large tray and placed in an oven at 30-35°C for 24 h to remove the solvent to collect the condensed solution and the honey extract and keep it in the freezer.

The mice were randomly placed in cages in order; to study anxiolytic effects of aqueous extract of *V. officinalis* and compare with buspirone, the mice were randomly assigned to 5 groups of 6 after 10 days. List of the treatment group and its corresponding experimental design has been

depicted in Table 1.

Table 1: List of the treatment group and its corresponding experimental design

Sl No.	Treatment group	Experimental design
1.	Healthy control group SH	1% distilled water was added to drinking water from day one to end of experiment
2.	Treatment group A	100 mg/kg aqueous extract of <i>Valeriana officinalis</i> was added to drinking water from day one to end of experiment
3.	Treatment group B	200 mg/kg aqueous extract of <i>Valeriana officinalis</i> was added to drinking water from day one to end of the experiment
<mark>4.</mark>	Treatment group C	300 mg/kg aqueous extract of <i>Valeriana officinalis</i> was added to drinking water from day one to end of experiment
<u>5.</u>	Treatment group BUS	30 mg/kg Buspirone was added to drinking water from day one to end of experiment

A 5 mg tablet of Buspirone was purchased from the pharmacy; given that the consumed dose is 30 mg/kg, the required dose for each mouse was first calculated according to its weight.

_	30 mg dosage	1000 g	
	X dosage per mice	30 g weight of each mouse	Λ-0.9

To make an aqueous extract of *V. officinalis* root (100 mg/kg), the dose per mice was calculated according to its weight. Then, the calculated value was accurately measured by a digital scale and solved in drinking water of the mice.

$$\begin{array}{c|cc}
\hline
100 \text{ Mg} & 1000 \text{ g} \\
\hline
X & 30 \text{ g weight of each mouse}
\end{array} \quad X=3$$

To make an aqueous extract of *V. officinalis* root (200 mg/kg), the dose per mice was calculated according to its weight. Then, the calculated value was accurately measured by digital scale and solved in drinking water of the mice.

To make an aqueous extract of *V. officinalis* root (300 mg/kg), the dose per mice was calculated according to its weight. Then, the calculated value was accurately measured by a digital scale and solved in drinking water of the mice.

An elevated plus maze which is a standard model for investigating the anxiety behaviour in

rodents was used to assess anxiety. This experimental model measures unconditional anxiety and

$$\begin{array}{c|cc}
\hline
300 \text{ Mg} & 1000 \text{ g} \\
\hline
X & 30 \text{ g weight of each mouse}
\end{array}$$

does not need the animal to train and learn [20]. The metal maze consisted of two open arms (each 10×50 cm) and two closed arms (each 10×50 cm) and height of the closed arms was 10 cm. The junction of two arms was a square-shaped space (10×10 cm). The device was about 50 cm above the floor. The light was provided by a 100 watt lamp located at an altitude of 120 cm from the plus maze [21]. Duration of the presence of mice on open arms was a marker of non-anxiety and duration of the presence of mice (arrival to each arm was the time when the head and both hands reach the arm to the center of gravity of the body) on closed arms was an anxiety marker [22].

For 10 days, buspirone and aqueous extract of *V. officinalis* were prepared daily and added to drinking water and enough food was placed; moisture, temperature and light were controlled every day. Ten days after receiving the drug, the mice were moved from the animal room to the anxiety testing laboratory (Animal Laboratory of the Faculty of Basic Sciences, Islamic Azad University, Neishabour Branch) one hour before the test (in order to adapt to the environment); before and after the experiment, it was attempted to provide a low-stress environment.

Each animal was placed in the middle of the central chassis in front of an open arm; for 5 min, movements and behaviour of the animal were recorded by a camera mounted on top of the maze and the video was automatically stored on the computer system connected to the maze and the camera. Each animal was used only once in the experiment. After completing each test, all parts of the device which was in contact with the mouse were cleaned and dried with cotton and alcohol; then the next mouse was placed in the device. All experiments were carried out within a time interval of 8-14. In all experiments, the ethics guidelines recommended by the International Veterinary Academy of Pain Management were observed.

Results

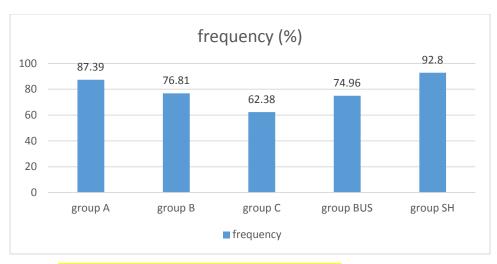

In order to describe the data, descriptive statistical method (mean, median, mode and standard deviation) was performed by software which was installed on the computer system connected to the camera and the maze system. In order to test the hypotheses, inferential statistics of one way ANOVA and T-Test were used; for analyzing the data, the SPSS 19 statistical program was used and charts were drawn by Excel software (2010).

Table 2 shows the mean and standard deviation of the anxiety scores in the groups SH, A, B, C and BUS.

Table 2: mean and standard deviation of anxiety scores in groups

<mark>Variable</mark>	Group	N	<mark>Mean</mark>	SD
Anxiety	A	<mark>6</mark>	<mark>87.39</mark>	8.52
	${f B}$	<mark>6</mark>	<mark>76.81</mark>	15.03
	SH	<mark>6</mark>	<mark>92.80</mark>	<mark>6.38</mark>
	BUS	<mark>6</mark>	<mark>74.96</mark>	<mark>9.55</mark>
	C	<mark>6</mark>	<mark>62.38</mark>	<mark>5.08</mark>
	<mark>Sum</mark>	<mark>30</mark>	<mark>83.76</mark>	11.6 <mark>9</mark>

As Table 2 shows, mean of the groups A, B, BUS, C and SH are 87.39, 76.81, 74.96, 62.38 and 92.80, respectively; moreover, standard deviation of the groups A, B, BUS, C and SH are 8.52, 15.03, 6.38, 9.55 and 11.96, respectively. Figure 2 shows column chart of anxiety score in the groups A, B, BUS, C and SH.

216217

218

225

Figure 2: Graphical representation of anxiety score in the groups

Testing normality of variables and homogeneity of variances

Shapiro-wilk test was used to test the normality of data (Table 3) and Levene test was used to

test the homogeneity of anxiety in the studied groups (Table 3).

Table 3: Shapiro-wilk test for testing normality

<mark>Variable</mark>	Group	N	\mathbf{W}	<mark>p-value</mark>
Anxiety	A	<mark>6</mark>	<mark>0.90</mark>	0.42
	<mark>B</mark>	<mark>6</mark>	<mark>0.83</mark>	<mark>0.11</mark>
	BUS	<mark>6</mark>	<mark>0.87</mark>	<mark>0.25</mark>
	C	<mark>6</mark>	<mark>0.98</mark>	<mark>0.95</mark>
	<mark>SH</mark>	<mark>6</mark>	<mark>0.92</mark>	<mark>0.53</mark>

As Table 3 shows, data is normally distributed (p<0.05).

Table 4: homogeneity of variances (Levene)

Variable	Df 1	Df 2	Levene's W	p-value
Anxiety	4	25	1.66	0.18

As Table 4 shows, Levene's W=1.66; thus, the variances are homogeneous (p>0.05).

Hypothesis testing

There is a significant difference in anxiolytic effect of aqueous extract of *Valeriana officinalis*

- root and Buspirone in mice.
- To test this hypothesis, ANOVA was used as shown in Table 5.

Table 5: one-way ANOVA

<mark>Variable</mark>	Source of variations	Sum of squares	Df	Mean of squares	<mark>F-value</mark>	<mark>p-value</mark>
Anxiety	Group Group	<mark>1262.19</mark>	<mark>4</mark>	<mark>315.54</mark>	<mark>2.91</mark>	0.04
	Error	<mark>2706.76</mark>	<mark>25</mark>	108.23		

	Total 3967.96 29						
230	As shown in Table 5, F-value=2.91 and P-value=0.04 supports the hypothesis; it can be claimed						
231	that there is a significant difference in the anxiolytic effect of aqueous extract of <i>Valeriana</i>						
232	officinalis root and Buspirone in mice.						
233	Sub-hypothesis 1						
234	There is a significant difference in the anxiolytic effect of 100 mg/kg aqueous extract of						
235	Valeriana officinalis root and 30 mg/kg Buspirone in mice.						
236	T-test was used to examine the first sub-hypothesis (Table 6).						
237	Table 6: t-test results for sub-hypothesis 1						
	Variablet-valueDfp-valueMean differenceStandard errorAnxiety-1.39100.35-1.372.21						
238	As the table above shows, the first sub-hypothesis is rejected (p-value=0.35).						
239	Sub-hypothesis 2						
240	There is a significant difference in anxiolytic effect of 200 mg/kg aqueous extract of <i>Valeriana</i>						
241	officinalis root and 30 mg/kg Buspirone in mice.						
242	T-test was used to examine the second sub-hypothesis (Table 7).						
243	Table 7: t-test results for sub-hypothesis 2						
	Variablet-valueDfp-valueMean differenceStandard errorAnxiety-1.85100.89-1.933.56						
244	As the table above shows, the second sub-hypothesis is rejected (p-value=0.89).						
245	Sub-hypothesis 3						
246	There is a significant difference in the anxiolytic effect of 300 mg/kg aqueous extract of V.						

- officinalis root and 30 mg/kg Buspirone in mice. 247
- 248 T-test was used to examine the third sub-hypothesis (Table 8).
- 249 Table 8: t-test results for sub-hypothesis 3

Variable	t-value	Df	p-value	Mean difference	Standard error
Anxiety	-2.93	10	0.001	-6.84	4.69

- As the table above shows, the third sub-hypothesis is accepted (t-value=-2.93; p-value=0.001).
- 251 Thus, there is a significant difference in anxiolytic effect of 300 mg/kg aqueous extract of V.
- officinalis root and 30 mg/kg Buspirone in mice (p<0.05).

Discussion

253

254 Medicinal plants currently form an important part of traditional medicine in many countries and 255 they have a special place in new therapeutic approaches. In order to explain the main hypothesis 256 based on scientific documents after intervention on all experimental and control groups 257 according to Table 5, ANOVA and T-test results showed a significant relationship between 258 anxiolytic effect of aqueous extract of *V. officinalis* root and Buspirone in mice. The results show 259 that aqueous extract of *V. officinalis* root causes a significant increase in the number of arrivals 260 and elapsed time in open arms compared to Buspirone. Therefore, it can be concluded that V. 261 officinalis is more effective than Buspirone in reducing anxiety. 262 The first sub-hypothesis indicated a significant difference in anxiolytic effect of 100 mg/kg 263 aqueous extract of *V. officinalis* root and 10 mg/kg buspirone in mice. According to the results 264 listed in Table 6, p-value=0.25 (p<0.05) supports the assumption of equal means between groups 265 A and BUS. The results show that 100 mg/kg aqueous extract of V. officinalis root causes a 266 significant difference in the number of arrivals and elapsed time of animals in open arms, 267 compared to 10 mg/kg buspirone; therefore, there is a significant difference in anxiolytic effect 268 of 100 mg/kg aqueous extract of V. officinalis root and 30 mg/kg buspirone in mice. In other 269 words, 100 mg/kg aqueous extract of V. officinalis root was weaker in reducing the anxiety 270 compared to 30 mg/kg Buspirone. 271 The second sub-hypothesis indicated a significant difference in the anxiolytic effect of 200 272 mg/kg aqueous extract of V. officinalis root and 10 mg/kg buspirone in mice. According to the 273 results listed in Table 7, p-value=0.89 (p>0.05) supports the assumption of equal means between 274 groups B and BUS. The results show that 200 mg/kg aqueous extract of V. officinalis root causes 275 no significant difference in the number of arrivals and elapsed time of animals in open arms, 276 compared to 30 mg/kg buspirone; therefore, there is no significant difference in anxiolytic effect 277 of 200 mg/kg aqueous extract of V. officinalis root and 30 mg/kg buspirone in mice. In other 278 words, 200 mg/kg aqueous extract of V. officinalis and 30 mg/kg Buspirone were equally 279 effective in reducing the anxiety.

The third sub-hypothesis indicated a significant difference in anxiolytic effect of 300 mg/kg aqueous extract of *V. officinalis* root and 30 mg/kg buspirone in mice. According to the results listed in Table 8, p-value=0.001 (p<0.05) does not support the assumption of equal means between groups C and BUS. The results show that 300 mg/kg aqueous extract of *V. officinalis* root caused a significant increase in the number of arrivals and elapsed time of animals in open arms, compared to 30 mg/kg buspirone; therefore, there is a significant difference in anxiolytic effect of 300 mg/kg aqueous extract of *V. officinalis* root and 30 mg/kg buspirone in mice. In other words, 300 mg/kg aqueous extract of *V. officinalis* and 30 mg/kg Buspirone were not equally effective in reducing anxiety; instead, 300 mg/kg extract further reduced anxiety and had a higher effect.

Conclusion

This study tended to compare the anxiolytic effect of aqueous extract of *Valencia officinalis* root with Buspirone in mice. Medicinal plants currently form an important part of traditional medicine in many countries and they have a special place in new therapeutic approaches. The results showed that aqueous extract of *V. officinalis* root causes a significant increase in the number of arrivals and elapsed time in open arms compared to Buspirone. ANOVA and T-test results showed a significant relationship between the anxiolytic effect of aqueous extract of *V. officinalis* root and Buspirone in mice. Therefore, it can be concluded that *V. officinalis* is more effective than Buspirone in reducing anxiety.

- It can be concluded that *V. officinalis* is more effective in reducing anxiety compared to buspirone.
- **Ethical Approval:**
- As per international standard or university standard written ethical approval has been collected
- and preserved by the author(s).
- **Consent:**
- 308 NA

309 References

310

- 311 1. Tiwari N, Baldwin DS. Yogic Breathing Techniques in the Management of Anxiety and
- 312 Depression: Systematic Review of Evidence of Efficacy and Presumed Mechanism of Action.
- 313 Anxiety. 2012;320: 228.
- 2. Ganji, M., 2014. Complete Guide to DSM5 Changes and Essential Tips. Tehran: Savalan.
- 315 3. Kaplan, HI; Sadock, Bj. (1998). Synapsis of psichiatery. Newyork: Williams & wilkins.
- 316 4. Vafai, A., Taherian, A. & Sobhaninejad, M. S., 2009. Evaluation of interactions of
- 317 corticosterone and verapamil on anxiety reactions in mice. Pharmaceutical Sciences, 11(3), pp.
- 318 219-226.
- 5. Mohler, H.)2012. (The GABA system in anxiety and depression and its therapeutic potential.
- 320 Neuropharmacology; 62(1): 42-53.
- 321 6. Moerman DE. (1996). An analysis of the food plants and drug plants of native North.
- 322 American Journal of Ethnopharmacology, 52: 1-2.
- 323 7. Cowan, MM. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews,
- 324 12(4): 564 -582.
- 325 8. Zargari, A., 2004. medicinal plants. Tehran: Tehran university.
- 9. Haji Akhundi, A. & Baligh, N., 2004. Practical Guide to Medicinal Plants. Tehran: scientific
- 327 publication center.
- 328 10. Amann, R; Peskar, B. (2002). Molecular pharmacology. Saunders, Philadelphia: 4-121.
- 329 11. Solati, J. & Sanagouye Motlagh, H., 2008. Anti-anxiety effects of Valepotriates derived from
- 330 Valeriana officinalis in rats. journal of medical sciences and healthcare services university,
- 331 12(48), pp. 64-67.
- 12. Roozbehi, A., 2015. effect of hydroalcoholic extract of *Valeriana officinalis* on astrocyteos
- of hippocampus formations of Rats. armaghan e danesh, 20(99), pp. 298-307.
- 13. Khajehpour, L., 2014. adrenergic interference in anxiolytic effect of hydroalcoholic extract
- of *Valeriana officinalis* root. feyz, 18(4), pp. 362-368.
- 14. Ekbatani, N. N., Taavoni, S. & Haghani, H., 2011. the effect of *Valeriana officinalis* on sleep
- disorders in postmenopausal women. 15(4), pp. 272-277.
- 338 15. Kafash Elahi, R., 2011. comparative study of the weakening effects of the extract of
- 339 *Valeriana officinalis* root, diazepam and ketamine on central nervous system in cat. Veterinary
- Journal of islamic azad university of tabriz, 5(20), pp. 1411-1417.
- 341 16. Gromballa, J; Beschornerb, F; Wantzenc, C; Paulsend, U, & Burkart, M. (2014).
- 342 Hyperactivity, concentration difficulties and impulsiveness improveduring seven weeks'
- 343 treatment with valerian root and lemon balmextracts in primary school children. Phytomedicine.
- 344 21: 1098-1103.
- 345 17. Min Nam, S; Choi, J.H; Yoo, D.Y; Kim, W; Jung, H.Y; Kim, J.W & et al. (2013). *Valeriana*
- officinalis extract and its main component, valerenic acid, ameliorate D-galactose-induced

- 347 reductions in memory, cell proliferation, and neuroblast differentiation by reducing
- 348 corticosterone levels and lipid peroxidation. Experimental Gerontology. 48: 1369–1377.
- 349 18. Felgentreff, F; Becker, A; Meier, B. & Brattstrom, A. (2012). Valerian extract characterized
- by high valerenic acid and low acetoxy valerenic acid contents demonstrates anxiolytic activity.
- 351 Phytomedicine. 19: 1216-1222.
- 352 19. Surajit, S; Koushik, R; Yogendra, K; Shilpa, G; Hina, K; Sanjeev, K; Kshipra, M, &
- Panjwani, U. (2012). *Valeriana wallichii* root extract improves sleep quality and modulates brain
- monoamine level in rats. Phytomedicine. 19: 924–929.
- 355 20. Tavakoli, M., 2012. Effect of Vitex agnus-castus Extract on Anxiety-like Behaviors in
- Orectomized Rats. journal of babol university of medical sciences, 14(5).
- 357 21. Solati, J., Oryan, S., Zarindast, M. & Parivar, K., 2009. Effects of amygdala colonergic
- 358 system on controlling the anxiety of rats in elevated plus Maze test. jrounal of kordestan
- university of medical sciences, Volume 4, pp. 65-74.
- 360 22. Hashemi Firoozi, N., Mahmoudi, M. & Shahidi, S., 2012. The Effect of Serotonin and Cyclic
- 361 guanosine monophosphate androgens on Anxiety Level of Mice. journal of tabriz university of
- 362 medical sciences, 34(5), pp. 41-45.

363

364