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ABSTRACT  
 

This work presents an efficient procedure based on Chebychev spectral collocation method for computing 
the 2D Laplace’s equation on a rectangular domain. The numerical results and comparison of finite 
difference and finite element methods are presented. We obtained a satisfactory result when compared 
with other numerical solutions. 
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1. INTRODUCTION  
 
A variety of problems arise throughout applied mathematics, classical and quantum mechanics require 
the solution of Laplace’s equation in different domains. The use of high numerical methods for the 
computational solution of Laplacian problems is important in many fields of physics and engineering.  
The general form of two dimensional steady-state Laplacian problems as given in the following equation: 
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where u is the potential of heat, solute, etc. Here,   is a regular domain with 1 1x   , 1 1y   . 

Solutions by many numerical methods have been proposed. These numerical methods range from finite 
difference, finite element, and boundary integral methods, through to analytical techniques such as 
conformal mapping and series solutions. Not much work has been done on Chebyshev differentiation 
matrix for computing Laplacian problems. Spectral collocation methods have aroused great interest in 
recent decades and have given rise to a large body of literature, including the books that are practically 
oriented and more advanced (Berrut and Trefethen, 2004). 
Taher et al, (2012) proposed efficient technique based on the Chebyshev spectral collocation method for 
computing the eigenvalues of fourth-order Sturm–Liouville boundary value problems.  Weideman, (2006) 
used spectral differentiation matrices for the numerical solution of Schrodinger’s equation, Hermite 
spectral collocation method for solving Schrodinger’s equation was demonstrated through a few 
examples. Kong & Wu, (2008) researched on Chebyshev tau matrix method for Poisson-type equations in 
irregular domain, Poisson-type problems, including standard Poisson problems, Helmholtz problems, 
problems with variable coefficients and nonlinear problems were computed.  Numerical schemes for 
Laplacian problems often encounter the problems of numerical dispersion and high computational effort 
(Li et al, 1997). The Chebyshev differentiation interpolation matrix was studied systematically by Gottlieb 
et al (1984), Solomonoff and Turkel (1986), and Peyret (1986).  
In the year 2000, Trefethen (2000) gave a MATLAB code to solve fourth-order differential equations 
equipped with only the clamped boundary conditions. Weideman and Reddy (2000) published a book on 
MATALAB differentiation matrix suite based on pseudospectral method. Yuksel et al (2015) applied apply 



 

 

the Chebyshev collocation method to linear second-order partial differential equations (PDEs) under the 
most general conditions. Sahuck Oh (2019) used Chebyshev collocation method to solve multi-
dimensional partial differential equations where efficient calculations are conducted by converting dense 
systems of equations to sparse using the quasi-inverse technique and separating coupled spectral modes 
using the matrix diagonalization method. Driscoll & Hale, (2016) introduced a novel and convenient 
approach for implementing boundary conditions in Chebyshev spectral collocation in such a way a  th-
order differential operator is naturally discretized by an        matrix, letting p boundary constraints to 

be attached to form an invertible             system. No collocation equation gets swapped in this 
process. Smith et al (2019) studied Fourier-Chebyshev pseudospectral method on flow over a circular 
cylinder and applied rectangular spectral collocation method developed by Driscoll and Hale, (2016) to 
solve the ambiguity in imposing multiple boundary conditions on the same boundary points. 
In this paper, we propose a new technique based on Chebyshev differentiation matrix for computing the 
solution of the two dimensional Laplace’s equation on a regular domain. This method is able to deal with 
Dirichlet boundary conditions on a regular domain.  
 

2.  METHODOLOGY  

 

2.1. Chebyshev Spectral Collocation 

Spectral methods arise from the fundamental problem of approximation of a function by interpolation on 
an interval. Chebyshev points are effective because each point has approximately the same average 
distance from the others, as measured in the sense of the geometric mean. On the interval      , this 
distance is about ½ (Trefethen, 2013). Multidimensional domains of a rectilinear shape are treated as 
products of simple intervals and more complicated geometries are sometimes divided into rectilinear 
pieces (Trefethen, 1994). 
Here, we restrict ourselves to the fundamental interval      . Let     be an integer, even or odd, and 

let         or         be a set of distinct point in       . For definiteness, let the numbering be in 
reverse order: 

                                    
The Chebyshev collocation points of the first kind or Gauss_Lobatto points are defined as 
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The Chebyshev collocation points of the second kind is defined as 
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Consider the interpolation polynomial ( )
j

g x  of degree N  satisfying ( )
j jk

g x  for the Chebyshev 

nodes which we can express as the projections of equispaced points on the upper half of the unit circle as  
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where the number of collocation points used is N+1. A spectral differentiation matrix for the Chebyshev 
collocation points is obtained by interpolating a polynomial through the collocation points, i.e. the 
polynomial  
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The nth -order derivative of the interpolating polynomial at the nodes is given by 
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where the i, jth element of the differentiation matrices 
n

i
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N
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entries of the matrix (Trefethen, 2000) are  
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2.2. Convergence Of Chebyshev Spectral Differentiation 

 
Following Trefethen (2000), suppose   is analytic on and inside the ellipse with foci    on which the 

Chebyshev potential takes the value    , that is, the ellipse whose semi-major and semi-minor axis 

lengths sum to           . Let   be the      Chebyshev spectral derivative of         . Then 

                                                     .    (9) 

The asymptotic convergence factor for the spectral differentiation process is at least as small as    : 
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3. RESULTS AND DISCUSSION 
 
Laplace’s Equation: Electric Potential over a Plate with Point Charge.  
Consider the following Laplace’s equation (Yang et al. 2005): 

2 2

2

2 2

( , ) ( , )
( , ) ( , )

u x y u x y
u x y f x y

x y

 
   

 
     (10)

 

          for  1 1, 1 1x y         

           where            

1 ( , ) (0 .5 , 0 .5 )

( , ) 1 ( , ) ( 0 .5 , 0 .5 )

0

fo r x y

f x y fo r x y

e ls ew h e re

 


    




   (11) 

and the boundary condition is ( , ) 0u x y   for all boundaries of the rectangular domain. 

For this problem, we naturally set up a grid based on Chebyshev points independently in each direction, 

called a tensor product grid. According to Trefethen, (2000), for 1D, a Chebyshev grid is 2   times as 

dense in the middle as an equally spaced grid, in d dimensions it becomes  2
d

 .  



 

 

We wish to approximate the Laplacian by differentiating spectrally in the x  and y  directions 

independently. The differentiation matrix 11 11 with N=12 in 1D is given by: 
 

2

1 2

-9 3 4 .4 2 8 9   3 4 4.7 3 8 0   8 5.5 6 9 2   4 0 .1 6 10   2 4.3 9 2 3   1 7 .0 7 1 8   1 3.10 6 8   10 .7 6 7 2   9.3 3 3 3   8.4 6 7 1   8.0 0 0 0

  1 6 5.7 2 3 4   2 0 6.6 6 6 7   10 0 .9 8 9 8   2 4.3 9 2 3   1 1.1 2 9 5   6.6 6 6 7   4.6 6 0 3   3.6 0 7 7   3.0 10 2   2.6 6 6
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  3.6 0 7 7   4.9 6 7 6   9.3 3 3 3   3 3.2 3 2 8   5 2.2 3 7 7   30 .9 2 8 2   8.0 0 0 0   3.8 3 9 0   2.4 30 8   1.8 2 7 3   1.5 5 9 8

  2.1 4 3 6   2.6 6 6 7   4.0 0 0 0   8.0 0 0 0   2 9.8 5 6 4   4 8.6 6 6 7   2 9.8 5 6 4   8.0 0 0 0   4.0 0 0 0   2.6 6 6 7   2.1 4 3 6
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If   is       identity matrix, then the second derivative with respect to x will be computed by            
   

and  the second derivative with respect to y will be computed by          
    .  

So, we have the discrete Laplacian  

If   is       identity matrix, then the second derivative with respect to x will be computed by            
   

and  the second derivative with respect to y will be computed by          
    .  

So, we have the discrete Laplacian  
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The solution appears as a mesh plot in figure 1 and as a contour plot in figure 2. The first shows the 
locations of the 2541 nonzero entries in the         matrix     . 
 

 
Figure 1: Sparsity plot of the         discreet Laplacian 

 



 

 

 
Figure 2: Some results represented as contour plot 

 
We have made the size of the subregions small and their density high around the points (+0.5,+0.5) and 
[(−0.5,−0.5), since they are only two points at which the value of the right-hand side of Eq. (10) is not 
zero, and consequently the value of the solution u(x, y) is expected to change sensitively around them. 
For comparison, the solution of the Laplace equation was carried out by three different methods, the 
Chebyshev differentiation matrix, finite element method and finite difference method to solve the same 
equation. The results obtained are depicted in Figures 3-5. 

 
Figure 3: Solution of the Laplace equation (1.2). The result has been interpolated to a finer  
rectangular grid for plotting. 



 

 

 
Figure 4: Solution by Finite Element Method.  

 
Figure 5: Solution by Finite Difference Method. 
 



 

 

 
Figure 6: Graphical Comparison of Spectral method, Finite element method and Finite Difference 
  method.   

 
 
4. CONCLUSION 
 
Chebyshev collocation method is successfully used for solving two dimensional Laplace’s equation. The 
two dimensional Laplace’s equation on a rectangular domain was formulated in terms of Kronecker 
products. Numerical test case shows that the results of above scheme are in good agreement with the 
other numerical methods. It was observed that the matrix, though not dense, is not as sparse as the 
typical matrix obtained with finite difference method or finite element method. A flexible discretization was 
obtained by switching to Driscoll and Hale, (2016) approach based on rectangular differentiation matrices 
to solve the ambiguity in imposing boundary conditions and no collocation equation gets replaced in this 
process. Comparisons with the results obtained by using finite difference method or finite element method 
show that the Chebyshev method yields good results with fewer number of iterations. Moreover, the 
above scheme can be developed to solve nonlinear parabolic partial differential equation. 
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