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Abstract

The mathematical structure of quantum field theories of first order and of
second order partial differential equations is analyzed. Relativistic properties
of the Lagrangian density and the dimension of its elements are examined. The
analysis is restricted to elementary massive particles that are elements of the
Standard Model of particle physics. In the case of the first order Dirac equation,
the dimensionless 4-vector γµ and the partial 4-derivative ∂µ whose dimension
is [L−1], are elements of the mathematical structure of the theory. On the other
hand, the mathematical structure of second order quantum equations has no
dimensionless 4-vector which is analogous to γµ of the linear equation. It is
proved that this deficiency is the root of inherent theoretical inconsistencies
of second order quantum equations. Problems of the Klein-Gordon particle,
the electroweak theory of the W±, Z particles and the Higgs boson theory are
discussed.
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1 Introduction

The variational principle plays a primary role in the present structure of physical

theories. In the case of classical mechanics of massive particles, this principle uses a

Lagrangian, whereas quantum theories are derived from a Lagrangian density. This

approach is adopted by contemporary textbooks. For example: the variational princi-

ple is ”the foundation on which virtually all modern theories are predicated” (see [1],

p. 353). The general form of a Lagrangian density of a quantum theory is

L(ψ(x), ψ(x),µ), (1)

where ψ(x) is the function of an appropriate quantum particle, and ψ(x),µ is its par-

tial derivative with respect to space-time coordinates. Standard notation is used in

this work. Another textbook supports this approach and states that ”All field the-

ories used in current theories of elementary particles have Lagrangians of this form”

(see [2], p. 300). The Lagrangian density (1) is regarded as the main expression

of each quantum theory, and the quantum equations of motion are partial differ-

ential equations that are the Euler-Lagrange equations which are derived from the

variational principle

∂L
∂ψ
− ∂

∂xµ
∂L

∂(∂ψ/∂xµ)
= 0 (2)

(see [2], p. 300, [3], p. 17). This principle is used below in an examination of the

mathematical structure of quantum field theory (QFT) of several kinds of elementary

massive particles.

Various arguments support this approach. Special relativity is a well-established

theory and any QFT should be consistent with it. This requirement is satisfied if

the Lagrangian density is a Lorentz scalar. For example, it is stated that ”the point

of the Lagrangian formalism is that it makes it easy to satisfy Lorentz invariance

and other symmetries: a classical theory with a Lorentz-invariant Lagrangian density
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will when canonically quantized lead to a Lorentz-invariant quantum theory” (see [2],

p. 292). Furthermore, physical processes abide by conservation laws, like those of

energy, momentum and angular momentum. The Noether theorem proves that the

Lagrangian density (1), which does not explicitly depend on space-time coordinates,

yields equations of motion that satisfy conservation of energy, momentum and angular

momentum (see e.g. [3], pp. 17-22). Many aspects of the significance of the Noether

theorem are adequately discussed in classical [4] and quantum [2,3, 5] textbooks.

The main objective of this work is to use the above mentioned framework for an

examination of the mathematical structure of quantum theories of first order partial

differential equations and of quantum theories of second order partial differential

equations. The analysis proves the consistence of the first order Dirac theory. In

contrast, unsettled problems exist with second order quantum theories of elementary

massive particles, like those of the Klein-Gordon (KG), W±, Z and the Higgs bosons,

which are described by second order partial differential equations (see [5], pp. 16, 17,

701, 715). Quotations from the present mainstream literature support this conclusion.

This work uses units where h̄ = c = 1. It follows that the action is dimensionless

and the dimension of a Lagrangian density L is [L−4]. Formulas take the standard

form of a relativistic covariant expression. The metric is diagonal and its entries are

(1,-1,-1,-1). The second section present several constraints that apply to an accept-

able quantum theory. The third section shows that the first order Dirac equation is

consistent with these constraints. The fourth section presents inconsistencies of sec-

ond order quantum theories of massive particles. The fifth section contains a further

discussion of these issues. The last section summarized this work.

2 Constraints on Quantum Theories

Constraints on the structure of a physical theory are useful elements because they

prevent a construction of a theory that is inconsistent with well-established physical
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laws. The necessity to abide by relativistic covariance and conservation laws is already

mentioned above in the introduction section. Other constraints on QFT of massive

particles are listed below.

C.1 h̄ has the dimension of action. Hence, in units where h̄ = c = 1 the action is

dimensionless, and the dimension of the Lagrangian density L of (1) is [L−4].

This property determines the dimension of the quantum functions ψ of L. Obvi-

ously, expressions that depend on quantum functions must satisfy dimensional

balance. This issue is used below in several cases. Furthermore, the discussion

presents examples that indicate that this self-evident attribute of the quantum

functions of L is apparently not well known.

C.2 The nonrelativistic limit of QFT corresponds to ordinary quantum mechanics.

Here is a quotation that clearly states this issue. ”First, some good news:

quantum field theory is based on the same quantum mechanics that was invented

by Schroedinger, Heisenberg, Pauli, Born, and others in 1925-26, and has been

used ever since in atomic, molecular, nuclear and condensed matter physics”

(see [2], p. 49). Below, this requirement is called the Weinberg correspondence

principle.

C.3 Many textbooks explain the correspondence between the classical limit of quan-

tum mechanics and classical physics. For example: ”Classical mechanics must

therefore be a limiting case of quantum mechanics” (see [6], p. 84; see also [7],

p. 15). This issue is called the Bohr correspondence principle. Hence, the Wein-

berg correspondence principle together with the Bohr correspondence principle

mean that an appropriate limit of QFT corresponds to classical physic.

C.4 An elementary classical massive particle is pointlike (see [8], pp. 46, 47). Hence,

particle’s position is well-defined in classical physics. The uncertainty principle
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says that the position of a quantum particle is approximately described by an

expression for its density. The correspondence principles C.2 and C.3 prove that

a theory of an elementary massive quantum particle must provide a consistent

expression for density, namely for the j0 component of a conserved 4-current

jµ.

C.5 The interaction term of Maxwellian electrodynamics is a contraction of a con-

served 4-current with the electromagnetic 4-potential

Lint = ejµAµ (3)

(see [8], p. 75). This is another reason for the need of a consistent expression

for a conserved 4-current of an elementary charged particle.

C.6 The Noether theorem provides an expression for a conserved 4-current of a

quantum particle. Assume that the particle’s Lagrangian density is invariant

under a global phase transformation of the quantum function

ψ(x)→ eiαψ(x), (4)

”where a single parameter α may run continuously over real numbers” (see [9],

p. 314). An application of this transformation yields

0 = iα

[
∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)]
ψ + iα∂µ

(
∂L

∂(∂µψ)
ψ

)
(5)

The expression inside the square brackets vanishes due to the Euler-Lagrange

equation (2). Furthermore, the variation parameter α 6= 0 means that the

expression inside the last brackets represent a conserved 4-current

jµ,µ = 0, (6)

where

jµ =
∂L

∂(∂µψ)
ψ. (7)
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Here j0 is the required density. It is interesting to note that a nonvanishing

contribution to a Noether 4-current is obtained from terms of the Lagrangian

density that contain a derivative ∂µψ of the quantum function. This important

property of the Noether 4-current (7) is mentioned below in several cases.

C.7 Quantum states can be organized as elements of a Hilbert space (see [2], pp. 49,

50). This space requires a well defined inner product of any pair of its elements.

C.8 Observables are represented by Hermitian operators that apply to elements of a

Hilbert space (see [2], p. 50). In particular, let ψ be a normalized eigenfunction

of an operator A whose eigenvalue is α, then

Aψ = αψ and (ψ,Aψ) = α, (8)

where the second expression is the inner product of the Hilbert space. The

primary objective of a physical theory is to provide a good description of ex-

perimental data. Hence, a quantum theory must have a well-defined form of

relevant observables. In particular, the Hamiltonian is a vital element of quan-

tum mechanics. Therefore, the Weinberg correspondence principle means that

QFT must provide a consistent expression for the Hamiltonian.

Below, each of these requirements is denoted by C.n, where n is the figure of the

respective requirement.

Here is a simple example that explains the vital need for a consistent expression

for some of the above mentioned quantities. Consider the leptonic decay of the Z

particle [10]

µ− ← Z → µ+. (9)

Experimental devices measure the (t,x) values of the outgoing µ−, µ+ leptons and

their energy-momentum. These data determine the trajectory of each of the outgoing

particles. If the two trajectories have a common space-time very small region that
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belongs to the common region of the primary colliding beams, and if the invariant

energy of the two particles agrees with that of the Z boson then the event is recognized

as a Z decay. The decay (9) is a particle creation and destruction process, which

belongs to the QFT domain of validity. It follows that an acceptable QFT theory must

provide appropriate expression for density and for energy-momentum of particles.

This example explains the relevance of requirements C.4, C.5 and C.8 to the real

world.

3 The Dirac Equation

The Lagrangian density of a free Dirac particle is

LD = ψ̄(γµi∂µ −m)ψ, (10)

where ψ̄ ≡ ψ†γ0 (see [3], p. 54, [5], p. 78). Here ψ̄, ψ are complex functions that

are treated as distinct independent variables of LD. As required, the Lagrangian

density (10) is a Lorentz scalar. The [L−4] dimension of a Lagrangian density and

the linearity of (10) prove that the dimension of a Dirac function ψ is [L−3/2]. The

Lorentz invariance of the first term of (10) is obtained from a contraction of two

different 4-vectors: γµ and ∂µ.

An important feature of (10) is that it is not a symmetric expression with respect

to ψ̄, ψ. Indeed, (10) contains a derivative of ψ but it is free of a derivative of ψ̄.

This issue plays an important role in the structure of the Dirac 4-current.

The Lagrangian density (10) is invariant under the global phase transformation

ψ(x)→ eiαψ(x), (11)

where α is a real constant (see [9], p. 314). In this case, the Noether theorem C.6

yields an expression for a conserved 4-current whose form is

jµ =
∂L

∂(∂µψ)
ψ = ψ̄γµψ, (12)
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(see e.g. [3], p. 56). The density of the Dirac particle is

j0 = ψ†ψ, (13)

where the relation ψ̄γ0 = ψ† is used. It is interesting to note that while the Dirac

Lagrangian density (10) is not symmetric with respect to ψ̄, ψ, its associated 4-current

(12), is symmetric with respect to these functions!

The symmetric 4-current (12) plays an important role in the structure of the Dirac

theory. Consider for example the Dirac Lagrangian density (10). The Hamiltonian

density that is obtained from (10) is

HD = ψ†[−iααα · ∇∇∇+ βm]ψ, (14)

where ααα, β denote the four ordinary Dirac matrices (see e.g. [3], p. 55). This form

shows that the quantity inside the brackets of the (14) is the operator form of the

Dirac Hamiltonian, which stands between the functions ψ†, ψ. Since ψ†ψ is the Dirac

density, one finds the well-known form of the Hamiltonian operator of a free Dirac

particle

HD = −iααα · ∇∇∇+ βm (15)

(see [5], p. 52). Evidently, the Dirac Hamiltonian is a Hermitian operator. The ψ†ψ

Dirac density means that the 3-dimensional integration of (14) takes the required

inner product of the Hilbert space (8)

(ψ,HDψ) ≡
∫
d3xψ†[−iααα · ∇∇∇+ βm]ψ. (16)

This expression for the Dirac Hamiltonian satisfies requirement C.8.

The fact that the Dirac 4-current (12) is independent of derivatives of ψ is a

crucial property, which is used in its electromagnetic interaction

Lint = −ejµAµ = −eψ̄γµψAµ (17)
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(see [2], p. 349, [3], p. 84). This term is free of derivatives of the fields, which means

that the introduction of electromagnetic interaction does not change the Noether

4-current (12). Hence, the Dirac theory is consistent with requirements C.4, C.5.

Moreover, the fact that density does not change means that the interaction term (17)

does not affect the inner product of the Hilbert space, and requirement C.7 holds.

4 Inherent Problems of Second Order Quantum

Equations

A second order quantum field theory of a massive particle is derived from a Lagrangian

density whose general form is

L = φ†,µφ,νg
µν −m2φ†φ+OT, (18)

where OT denotes other terms. Here, like in the standard form of (1), the quantum

function φ ≡ φ(x), where x denotes the four space-time coordinates. The first term

of (18) is a Lorentz-contraction of two 4-gradients of the field functions φ†, φ. In

some cases a Lorentz-contraction of two 4-curls replaces the first term of (18). This

term is bilinear in derivatives of φ†, φ. Hence, the second term of the Euler-Lagrange

equation (2) yields a second order partial differential equation. The first and the

second terms of (18) are the KG Lagrangian density (see e.g. [2], p. 21, [11], p. 191).

Textbooks show that the first term of (18) yields a Noether 4-current that is

antisymmetric with respect to φ†, φ

jµ = i(φ†φ,µ − φ†,µφ) (19)

(see e.g. [2], p. 27, [3], p. 40, [11], p. 193). In particular, the expression for density,

j0 is antisymmetric with respect to φ†, φ. In contrast, the Hamiltonian density is

the T00 component of the energy-momentum tensor. Hence, the Hamiltonian density

that is derived from (18) is symmetric with respect to φ†, φ. For example, the KG
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Hamiltonian density is

H = φ†,0φ,0 +
3∑
i=1

φ†,iφ,i +m2φ†φ (20)

(see e.g. [2], p. 22, [3], p. 38, [11], p. 192).

The opposite φ†, φ symmetry of the density (19) and of the Hamiltonian density

(20) prove that in the case of a second order quantum theory one cannot extract the

Hamiltonian operator from the Hamiltonian density. This shortcoming differs from

the corresponding feature of the first order Dirac theory which provides an explicit

form of the Hamiltonian operator (see (14), (15)). Therefore, second order quantum

theories of a massive particle are inconsistent with the Weinberg correspondence prin-

ciple, because the Hamiltonian operator is a crucial element of quantum mechanics.

Another discrepancy of a second order quantum theory stems from the density j0

of (19). Here density depends on time-derivative of the field functions φ†, φ. There-

fore, the Heisenberg picture cannot be used for this theory, because field functions of

this picture are time-independent. Hence, in the case of second order quantum equa-

tion, one cannot be sure of a physical property whose validity relies on the Heisenberg

picture (see e.g. [2], pp. 109, 288, 297, 298, 425).

A special problem exists in the case of an electrically charged particle that belongs

to a second order quantum theory, like the charged KG particle and the electroweak

W± bosons. Here, neither of the following alternatives describes properly electromag-

netic interaction.

Q.1 Consider an application of the transformation

∂µ → ∂µ − eAµ (21)

to a Lagrangian density (see e.g. [2], p. 9, [11], p. 198). This transformation

is called the minimal interaction. The first term of (18) proves that in second

order theories the transformation (21) yields a Lagrangian density that depends
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quadratically on the 4-potential Aµ (see e.g. [11], p. 198). Hence, Maxwellian

electrodynamics is violated, because this theory depends linearly on Aµ (see

e.g. [8], pp. 78-80).

Q.2 The original form of the Noether 4-current (19) is used in an expression of the

electromagnetic interaction

Lint = [i(φ†φ,µ − φ†,µφ)]Aµ. (22)

This term depends explicitly on derivatives. Hence, it destroys the Noether

expression for the 4-current (19) upon which it depends.

Q.3 The general structure of a second order Lagrangian density (18) and its Noether

4-current (19) demonstrate an intrinsic difference between the Dirac linear quan-

tum theory and theories that have a second order equation: As stated above, in

the case of a Dirac theory, the Lagrangian density (10) is not symmetric with

respect to ψ̄, ψ, whereas the corresponding 4-current (12) is symmetric with

respect to these functions. In contrast, in a second order quantum theory the

Lagrangian density (18) is symmetric with respect to φ†, φ, but the correspond-

ing Noether 4-current (19) is antisymmetric with respect to these functions. It

is shown above that this quite unfavorable property of a second order quantum

theory disables a construction of a Hamiltonian operator, which is required by

the Weinberg correspondence principle.

The literature provides strong evidence that indicates the correctness of the fore-

going result, which proves that no consistent expression can describe the electromag-

netic interaction of an electrically charged elementary quantum particle that satisfies

a second order quantum equation. For this purpose, let us compare the status of

electromagnetic interactions of the Dirac first order quantum equation with that of
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second order quantum equations. In the case of the first order quantum theory, elec-

tromagnetic interaction is correctly described in the original Dirac paper (see eq.

(14) in [12]). Furthermore, an explicit expression of a conserved 4-current of a Dirac

particle has been found about one month later [13]. By contrast, many decades have

already elapsed since the rise of the electroweak theory but very large research centers,

like CERN and Fermilab, still use effective expressions for the electroweak description

of the W± electromagnetic interactions [14,15]. Here the effective expression violates

Maxwellian electrodynamics because its interaction term contains derivatives, and it

is not based on a consistent 4-current.

Here are two quotations from textbooks that provide another support for the

claim about the discrepancy of a second order quantum theory of a charged particle

with respect to Maxwellian electrodynamics. ”... electrodynamics of spinless parti-

cles is more complicated” (see [2], p. 349). Another statement describes problems

of electromagnetic interactions of a charged KG particle: ”Indeed, they appear with

a vengeance, since the coupling prescription (15.1) introduces interaction terms con-

taining derivatives” (see [3], p. 87). (Note that (15.1) of this textbook is the above

mentioned minimal interaction (21).)

5 Discussion

It is pointed out above that the first order Dirac theory can use the dimensionless

4-vector γµ and the partial 4-derivative ∂µ whose dimension is [L−1] as elements of the

theory, whereas second order quantum theories have no analog for the γµ 4-vector of

the Dirac theory. An interaction of a quantum particle with an external second-rank

antisymmetric tensor provides an example that illustrates this drawback of second

order theories.

The idea that the electron may also interact directly with external electromagnetic

field has been suggested a long time ago (see [16], p. 223, [2], pp. 14, 517, 520). The
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corresponding interaction, which is called the Pauli term, takes the form

L′ = dψ̄σµνFµνψ, (23)

where

σµν ≡
i

2
(γµγν − γνγµ) (24)

(see [17], p. 21), Fµν is the electromagnetic field tensor (see [8], p. 65), and the coef-

ficient d has the dimension of length. The interaction (23) alters the Dirac expression

for the electron’s dipole moment (see [16], p. 223, [2], p. 14). As a matter of fact,

the ordinary Dirac interaction (17), which contains no term like (23), yields a very

good prediction for the electron’s magnetic dipole moment. Hence, the Pauli term

(23) has been removed from the standard expression for the electron’s electromagnetic

interaction.

The Pauli term has recently been rediscovered, and it can be shown that it de-

scribes weak interactions, where parity violation is proved [18–20]. Here the transition

from the Lagrangian density to the Hamiltonian density adds a γ0 factor, and the

product γ0σµν of (23) splits into a sum of a vector and an axial vector. The Pauli

term (23) shows the flexibility of the first order Dirac theory, where the dimensionless

γµ 4-vector enables to write down a consistent derivative-free covariant expression for

the interaction of a Dirac particle with a second rank antisymmetric field tensor that

takes the form of F µν .

Problems arise if an analogous attempt is made with the W±, which the elec-

troweak theory regards as an elementary charged particles belonging to the second

order category of quantum theories. A term that represents the Standard Model W±

interaction with an external second rank antisymmetric tensor V νη is

LWWV = iW †
µWνV

µν (25)

(put kv = 1 in eq. (3) of [15]. See also [14], [21], [22]). According to the definition
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of [15], V νη is either the ordinary electromagnetic field tensor F µν or an appropriate

tensor of the electroweak theory.

Dimensional considerations totally reject this expression. Indeed, as shown above,

the dimension of the electroweak quantum function W± is [L−1]. It means that the

dimension of the product W †
µWν of (25) is [L−2]. This value disagrees with the [L−3]

dimension of the electric charge density. Therefore, the electroweak interaction term

(25) strongly violates Maxwellian electrodynamics, where the interaction is propor-

tional to the strength of the electric charge.

It is well known that dimensional balance is a very strong requirements that every

physical expression must abide with. Requirement C.1 states that the Lagrangian

density of the variational principle determines the dimension of the field functions ψ

of (1). The term (25), which violates dimensional balance of charge density, is used

in [14], [15], [21], [22], and the total number of the authors of these publications is a

number of four decimal digits. This evidence indicates that the dimension attribute

of a quantum function is still not very well known.

Some points of this work explain why the electroweak theory suffers unsettled

contradictions. The following items demonstrate one issue.

EW.1 The electroweak theory is based on a Lagrangian density and the dimension of

each of its terms is [L−4].

EW.2 The second order of the differential equations of the electroweak theory proves

that the dimension of each of its quantum functions is [L−1].

EW.3 The electroweak theory regards theW± as elementary charged particles. Maxwellian

electrodynamics is based on a conserved 4-current. The 4-current’s dimension

is [L−3], and it satisfies the continuity equation (6).

EW.4 The dimension of the product of the electroweak functionsW †W is [L−2]. There-
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fore, dimensional balance requires that any 4-current of the W± must depend

on a derivative with respect to the space-time coordinates.

EW.5 Items Q.1 and Q.2 of section 4 prove that a derivative destroys the compatibility

of the W± electromagnetic interaction.

EW.6 The straightforward observation of real facts which is presented near the end of

the previous section relies on commonsense. These facts provide a very strong

support for the inability to find a consistent expression for the 4-current of the

electroweak W± particles: After about half a century, the literature still does

not show a consistent 4-current of the electroweak W±; CERN and Fermilab

use an electromagnetic interaction term of the W± whose 4-current does not

satisfy the continuity equation (6).

The foregoing discussion shows some inconsistencies of the Standard Model of

particle physics (SM). It turns out that other SM problems do exist. Here is just one

example. The hard photon data show that ”the limiting photon total cross sections

on neutrons and protons are nearly the same” (see [23], p. 269). Evidently, a proton

and a neutron have different charged constituents. Hence, the photon’s interaction

with their charged constituents cannot explain the data. An expression called the

hadronic structure of the photon aims to provide an explanation for the effect. This

explanation says that a physical photon is a combination of a massless pointlike pure

electromagnetic photon and a massive composite hadron, which is a bound state of

quarks. However, this explanation is theoretically unacceptable, because it violates

the Wigner analysis of the unitary representations of the inhomogeneous Lorentz

group [24]. This analysis proves that a massive quantum particle and a massless

quantum particle are completely different objects. And indeed, although the photon

is an elementary particle, and the proton and the neutron are the best well-known

baryons, SM textbooks do not discuss the interaction of a hard photon with a nucleon.
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It means that the SM provides no explanation for the fundamental physical effect of

hard photon-nucleon interaction.

6 Concluding Remarks

This work shows the consistency of the Dirac theory of a massive quantum particle,

that is described by first order partial differential equation with respect to the four

space-time coordinates. In particular, the 4-current (12) and the associated density

(13) are consistently described. These variables enable the extraction of the Dirac

Hamiltonian operator from the Hamiltonian density. This objective is required for the

Weinberg correspondence between QFT and quantum mechanics. Moreover, it is well

known that the Dirac 4-current enables a consistent description of electromagnetic

interaction (17).

By contrast, inherent problems hold for massive quantum particles, like those of

the KG, W±, Z and the Higgs bosons, which are described by second order partial

differential equations (see [5], pp. 16, 17, 701, 715). In particular, no consistent ex-

pression for density holds, and electromagnetic interactions of charged particles are

described by non-Maxwellian phenomenological expressions. Furthermore, a consis-

tent Hamiltonian operator cannot be extracted from the Hamiltonian density, and a

Hilbert space cannot be constructed. Hence, the Weinberg correspondence principle

fails.

The flexibility of the Dirac theory, which has two different 4-vectors, γµ and ∂µ,

is shown as a useful theoretical element. These 4-vectors enable a construction of

a consistent Lagrangian density which is a Lorentz scalar whose dimension is [L−4].

Second order quantum theories have no analog for the Dirac γµ 4-vector, and they

have no consistent expressions for the Lagrangian density. In particular, no con-

sistent 4-current exists and it is proved above that the fundamental structure of

Maxwellian electrodynamics fails. Moreover, no Hamiltonian operator exists, and the
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time-independent Heisenberg picture cannot be used. It is also shown that an indirect

support for these conclusions can be found in mainstream scientific literature. The

present structure of the SM of is based on the above mentioned theories of the W±, Z

and the Higgs bosons. This work proves that the SM suffers fundamental problems.

The solid status of the Dirac electron theory is manifested in experimental tests

and in textbooks. Here are just few examples:

1. The Dirac theory predicts the existence of an antiparticle of a Dirac particle,

where the antiparticle has the same physical properties as those of the Dirac

particle, but its charge takes the opposite sign. This issue is experimentally

confirmed and the mass, magnetic moment and charge of the positron agree

with those of the electron for more than 7 decimal digits [10].

2. A calculation of the magnetic moment of a Dirac electron agrees with experi-

ment for 10 decimal digits (see [25], p. 7).

3. R. P. Feynman, who has made an important contribution to QED, has described

it as ”the jewel of physics–our proudest possession” (see [25], p. 8). Evidently,

the Dirac electron theory is an important part of QED.

No similar experimental or theoretical evidence pertain to theories of other quan-

tum particles. This state of affairs indicates that problems may exist with other

quantum theories. This works proves that indeed, problematic points do exists in

quantum theories of elementary massive particles that have a second order equation.

It is interesting to mention that these results agree with Dirac’s lifelong objection

to second order equation of a massive quantum particle (see [2], p. 14, [26], p. 3).
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