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ABSTRACT  
 
 

Aim: To propose an updated algorithm with an extra step added to the Newton-type 

algorithm used in robust rank based non-parametric regression for minimizing the dispersion 

function associated with Wilcoxon scores in order to account for the effect of covariates.  

Methodology: The proposed accelerated failure time approach is aimed at incorporating 

right random censoring in survival data sets for low to moderate levels of censoring. The 

existing Newton algorithm is modified to account for the effect of one or more covariates. 

This is done by first applying Mantel scores to residuals obtained from a regression model, 

and second by minimizing the dispersion function of these scored residuals. Diagnostic 

check of the model fit is performed by observing the distribution of the residuals and suitable 

Bent scores are considered in the case of skewed residuals. To demonstrate the efficacy of 

this method, a simulation study is conducted to compare the power of this method under 

three different scenarios: non-proportional hazard, proportional and constant hazard, and 

proportional but non-constant hazard.  

Results: In most situations, this method yielded reasonable estimates of power for detecting 

an association of the covariate with the response as compared to popular parametric and 

semi-parametric approaches. The estimates of the regression coefficient obtained from this 

method were evaluated and were found to have low bias, low mean square error, and 

adequate coverage. In situations, where there is no clear best parametric fit for the data and 

censoring is not high, the proposed method provides a robust alternative to obtain estimates 

of the regression coefficient. 

Conclusion: In situations where there is no clear best parametric fit for time-to-event data 
with moderate level of censoring, the proposed method provides a robust alternative to 
obtain regression coefficients (both adjusted and unadjusted) with a performance 
comparable to that of a proportional hazards model. 
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1. INTRODUCTION  
 
For interval scaled, non-censored data, Conover and Iman [1] have investigated the 
properties of regression analysis of the ranks of interval data as an alternative to ordinary 
least squares analyses. These contributions of Conover and Iman provided an alternative 
non-parametric rank-transform approach that allowed for the modeling of the impact of 
multiple continuous and categorical predictors on continuous outcomes. Howard and Koch [2] 
extended this approach to the univariate analysis of exponentially distributed right censored 
(survival) data by considering simple regression analysis of log rank scores, showing the 
performance of the approach to be similar to proportional hazards modeling. Their simulation 
studies show that in the case where there are no ties in the survival times, this approach was 
only marginally less powerful than tests from proportional hazards models, but clearly less 
powerful than a likelihood ratio test for a fully parametric model when the appropriate 
underlying survival function is employed. When there were tied survival times, this approach 
proved marginally more powerful than tests from Cox’s semi-parametric proportional hazards 
procedure. While their approach is generally reliable for the testing of associations with 
survival outcomes, it has the substantial shortcoming of not providing a clinically interpretable 
parameter quantifying the magnitude of the association between predictors and outcomes, 
such as the hazard ratio provides for proportional hazards analysis. This shortcoming arises 
due to the fact that when the response variable is replaced by its logrank score, it is not 
possible to estimate the true value of the regression coefficient in the original metric. Hence 
commonly used measures of assessing performance of the method such as bias, mean 
square error, and coverage cannot be deployed. Also, Howard and Koch [2] did not evaluate 
the performance of logrank scores when survival data comes from different distributions such 
as the loglogistic or the lognormal distribution and is hence not generalizable. 
 
Many authors such as Hougaard [3] have commented on the restrictions owing to lack of 
suitable estimation routines in the non-parametric case for an accelerated failure time model. 
Several semiparametric estimators accommodating censoring in survival data were proposed 
such as the modified least squares estimator by Buckley and James [4] and rank-based 
estimators based on the weighted log-rank statistics by Prentice [5]. The theoretical properties 
of these estimators were rigorously studied by Tsiatis [6], Ritov [7], Lai and Ying [8] and [9], 
and Ying [10] among others. Jin, Lin, Wei, and Ying [11] has discussed the reasons why 
despite theoretical developments, semiparametric approaches are rarely used in real life 
applications owing to the lack of efficient and reliable computational methods. They discuss 
how the inference procedure developed by Wei, Ying, and Lin [12] based on the minimum 
dispersion statistic is difficult and cannot be solved by conventional optimization algorithms. 
To overcome the limitations of the computational method developed by Lin and Greyer [13] in 
failing to always find a true minimum for the dispersion statistic, Jin et al., [11] have developed 
a linear programming method to minimize a convex objective function for the rank estimator 
based on Gehan [14] type weight function without having to indulge in nonparametric density 
estimation.                                                                                                                                                                                                                                                                                                                                                                                    
 
Advances in robust rank-based procedures have spawned a detailed methodology for 
analyzing linear and nonlinear models in a regression setting. This methodology applies the 
appropriate scoring function (such as the Wilcoxon scoring function) on the residuals arising 
out of a log-linear model rather than the response variable thereby allowing the estimation of 
the regression coefficient. This methodology has also been extended to diverse areas such 
as time-series analyses, random effects models, and censor-free survival data; however, 
reliable and easy-to-use developments to extend the approaches to the analysis of right-
censored (survival) data have not been investigated using this approach. In the context of the 
survival data analyses, by estimating the regression coefficient, this method therefore, has the 
potential to allow the practitioner to derive meaningful measures of the magnitude of the 
association such as the increase in median survival time (of treatment over placebo). 
 
By replacing the Euclidean (L2) norm by a rank-based norm, and by minimizing the dispersion 
function associated with this norm, it is possible to get robust non-parametric estimates of the 
regression parameters (Hettsmanperger and McKean [15]). Various diagnostic procedures 



 
 

 

that examine the quality of fit of these models and inference procedures to compute 
confidence intervals for parameters and their contrasts have also been developed 
(Hettsmanperger & McKean [15]). With non-censored data, these procedures outperform the 
traditional least squares methods when there are many outliers and influential points in the 
data set. The performance of these rank-based approaches is optimized when the underlying 
error density is known as it is possible to compute the optimal scoring function (McKean and 
Sievers [16]). These methods can therefore be extended to survival data and optimal scoring 
functions for many popular distributions used in analyses of time to failure data including 
exponential, Weibull, loglogistic and lognormal have been calculated. In order to counter the 
influence of outliers from affecting the model fit, various weighted versions of the rank-based 
model fit have been proposed (McKean, Terpstra, and Kloke [17]).  
 
Herein, we show how a fully non-parametric approach can be employed to estimate 
regression coefficients, and assess the impact of the approach across varying censoring rates 
from relatively low censoring rate as would be observed in an oncology study to a higher 
censoring rate as observed in cardiovascular outcome studies. Our analyses are focused on 
right censored survival data expressed as a log-linear model and the performance is 
assessed via a simulation study. 
 
In Section 2.1, we discuss in brief the general theory associated with the rank based 
procedures. Hettsmanperger and McKean [15] outline the Newton Raphson algorithm used to 
obtain the optimal regression parameter estimates. The R code for implementing this 
algorithm is due to Terpstra and McKean [18]. In Section 2.2, we discuss our motivation for 
extending these methods to account for right random censoring in survival data. In Section 
2.3, for the case where Wilcoxon scores are used as the scoring function (optimal for the 
logistic error density), we propose the addition of an extra step to this algorithm that 
incorporates the right random censoring mechanism inherent in survival data so as to 
reassign the Wilcoxon scores without violating the assumptions required by theory. This 
approach makes use of the fact that responses that have been censored carry partial 
information to the effect that an event has not occurred till the time of censoring but is likely to 
occur at some time in the future. In Section 2.4 we discuss the Bent score function as a 
diagnostic checking aid (and as an alternative) to the Wilcoxon fit of residuals in the case 
where the residuals are positively skewed. In Section 3.1 and 3.2, we simulated data from 
different scenarios reflecting different levels of censoring and different error densities. In 
Section 3.3, we present results obtained from applying the proposed method to a real-life data 
from a cohort of patients suffering from pancreatic cancer. The results obtained from our 
method are compared with those obtained from the traditional approaches that are otherwise 
used to analyze this data. Concluding remarks are presented in Section 4. 

 

2. MATERIAL AND METHODS 
  
2.1 Rank-based Methods for Linear Models  
 
In this section we give a brief discussion of the theory associated with developing linear 
models in the context of nonparametric regression that can be used to draw inference. 
 
Let Y denote a n x 1 vector of responses that follows the linear model: 

 
  Xβ1Y            (1) 

 
where 1  denotes a n x 1 vector of ones,  is an unknown scalar intercept, X is a n x p matrix 

of predictors (continuous or categorical), β  is a p x 1 vector of unknown constant regression 

coefficients, and   is the n x 1 vector of random errors. Let   be the column space of full 

rank design matrix X so that the dimension of   is p. The rank-based estimate of β  is given 

by: 
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Here, Argmin is the value of β  that minimizes ||||)( X βYβ 


D  and ||||   is the pseudo-norm 

used in the rank-based procedures that has replaced the Euclidean norm of the traditional 
least squares methods and is given by: 
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scoring functions can be generated such as the sign-pseudo norm of the form 

)2/1sgn()(  uu  and the Wilcoxon pseudo-norm of the form )2/1(12)(  uu . Thus in 

terms of these pseudo-norms, )(β


D is a convex function of β  and )ˆ(


βD is the minimized 

distance between Y and  . As the scores are standardized (they sum to zero) and the ranks 
are invariant to a constant shift, the intercept cannot be estimated using the norm and is 

usually estimated as the median of the residuals YYe ˆˆ  in the following way: 
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Hettsmanperger and McKean (1998) have shown that under some regularity conditions  
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They then applied this result to develop asymptotic test of hypothesis and other inferential 
procedures. A formal Newton-type algorithm to compute the estimates of the regression 
parameters by minimizing the dispersion function given in equation (3) has been proposed by 
Kapenga, McKean, and Vidmar [19] who have programmed the algorithm in the Fortran 
routine rglm (see Appendix A). 

 
2.2 Scoring Scheme in the Proposed Algorithm 
 
In this section we discuss modifications to this algorithm to accommodate survival data with 
right random censored observations. It is very important to note that the algorithm in Appendix 
A applies the Wilcoxon scores on the residuals and not directly on the observations which 
constitute the survival data. The proposed approach extends results (discussed below) 
obtained by Mantel [20] that were originally applied directly to survival data, by applying the 
scoring function to the residuals while retaining the assumptions required by the algorithm 
discussed in Appendix A. 
 

From equation (A.1) in Appendix A, it can be seen that the scoring function )}ˆ({ ea R  is a 

vector whose i
th
 component is )}ˆ({

i
eRa . Using the formula for )( u

f
  defined in the preceding 

section, Hetsmanperger and McKean [15] showed that for errors which follow a logistic 

distribution, )21(12)()}1()({)}({  uuneReRa   is the optimal scoring function and 



 
 

 

is called the Wilcoxon scoring function. Let X(1), X(2), X(3),…,X(n)  be the ordered statistics from 
a uniform distribution. If all the observations j = 1,2,3,…n are uncensored, it follows that E{X(j)} 
= j/(n+1) (see for instance (Casella and Berger, 2002). Furthermore, it can be shown that 
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j
X . Thus, the Wilcoxon scoring function 

)21(12)(  uu applied over the ranked residuals represents the standardized expected 

values of the ordered statistics from a Uniform (0, 1) distribution. This scoring function 
satisfies the assumptions discussed in section 2.1 above.  However, it should be noted that 
no adjustment is made to account for censored observations in the sense that the scoring 
function does not distinguish between an event and a censored observation. 
 
Mantel [20] has obtained the expected values of the Uniform (0, 1) order statistics in the 
presence of arbitrary right censoring for survival data. Our proposed modification to the 
algorithm applies Mantel’s method to reflect change in scores for the ranked residuals that are 
associated with censored observations. As an illustration, consider the following hypothetical 
survival data sorted in ascending order where ‘E’ indicates an uncensored (event) observation 
and ‘C’ indicates a right censored observation: T(1)=1(E), T(2)=2(E), T(3)=4(C), T(4)=6(C), 
T(5)=7(C),T(6)=8(E), T(7)=10(E), T(8)=12(E), T(9)=15(E), T(10)=18(E). In this dataset of 10 
observations sorted in ascending order, the first 2 observations are uncensored followed by 3 
censored observations and then followed by 5 uncensored observations. For this particular 
ordering of events and censored observations, applying Mantel’s method we get: 
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where i = 2 (first two uncensored observations), k = 3 (next three censored observations), n – 
i – k = 5.   
 
Since the first 2 observations are uncensored, they are assigned the scores of 1/11 and 2/11 
respectively. The next three events are censored observations and are each assigned a score 
of 6.5/11 which is the average over the interval 2 through 11 divided by n+1. The remaining 5 

observations which are uncensored are spread over kin  1  = 6 intervals so that the 

average width into which they would divide the remaining space is 

5.1)1/()}(1{
)(
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The censoring mechanism dictates the allocation of scores to the observations depending on 
whether they are uncensored or censored values and depending on their order of their 
occurrence in the data set. It is important to note that with the allocation of these scores, 
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2/1)E(/1( )  still holds. Further adjustments can be made for tied events. Thus for a 

consecutive sequence of m ties j,  j+1, j+2,…, j+(m-1), the expected values for each X(j) is 
averaged across the m ties. For tied censored observations, however, no adjustment is 
necessary reflecting the fact that the empirical distribution does not have any probability 



 
 

 

between successive uncensored observations and has all its remaining mass at or beyond 
the later uncensored observation (Mantel 1981). Thus consecutive tied censored 
observations share the same score (6.5 for the three tied censored observations j = 3, 4, 5). 
  

Here, it should be noted that equation (3) calls for )}1/({)(  niia   to be a non-decreasing 

set of scores, not all equal (Jaeckel [22]). However, the Mantel scoring scheme has assigned 
scores of 1/11, 2/11, 6.5/11, 6.5/11, 6.5/11, 3.5/11, 5/11, 6.5/11, 8/11 and 9.5/11 respectively 
to the observations T(1)=1(E), T(2)=2(E), T(3)=4(C), T(4)=6(C), T(5)=7(C),T(6)=8(E), T(7)=10(E), 

T(8)=12(E), T(9)=15(E), T(10)=18(E) that would make the convexity property of )(β


D not always 

hold in general (Jaeckel [22]). To overcome this problem, the censored observations 
T(3)=4(C), T(4)=6(C), T(5)=7(C) which resulted in a score of 6.5/11 need to be assigned new 
pseudo values. This is based on the assumption that a censored observation is a partially 
observed value and its true unobserved value is likely more than its observed (censored) 
value. Thus we need to find two consecutive event observations with respective scores     
and    such that the conditions 6.5/11     and 6.5/11     are met. In this data set, we find 

that T(8)=12(E) and T(9)=15(E) two such event observations with respective scores   = 6.5/11 

and   = 8/11. Therefore, the pseudo values for the three censored observations are 
generated as the average of 12 and 15 leading to a pseudo-value of 13.5. That is, we have 
now generated the scores as 1/11, 2/11, 3.5/11, 5/11, 6.5/11, 6.5/11, 6.5/11, 6.5/11, 8/11 and 
9.5/11 respectively for the observations T(1)=1(E), T(2)=2(E), T(3)=8(E), T(4)=10(E), T(5)=12(E), 
T(6)=13.5(pseudo value), T(7)=13.5(pseudo value), T(8)=13.5(pseudo value),T(9)=15(E), 
T(10)=18(E). This results in a value of [1(1) + 2(2) + 8(3.5) + 10(5) + 12(6.5) + 13.5(6.5) + 

13.5(6.5) + 13.5(6.5) + 15(8) + 18(9.5)]/11 = 65.023 for )(β


D and ensures its convexity 

owing to the observations and their corresponding scores ordered in the same direction in the 
sum of equation (3).  
 
Every data set will thus have a unique scoring scheme based on the order in which events 
and censorings occur in the dataset. After the initial Mantel scoring, pseudo values will have 
to be generated for all the censored observations with their magnitude depending on first 
finding   and   , and then averaging out the magnitude of the observations corresponding to 

  and   . In cases where the largest observation in a dataset is an event and the Mantel score 
for any censored observation exceeds this largest event observation, the pseudo value for 
this censored observation will be the same as this largest event observation. When the 
largest observation in a dataset is a censoring, its Mantel score will always be more than that 
of the largest event observation and so there is no cause for concern. 

 
 
2.3 Steps of the Proposed Modified Algorithm 
 
In this section we enumerate the steps in our updated algorithm.  
 

Step (i) Obtain an initial estimate of the regression coefficients,
)0(

β̂ (say, the least squares 

estimate) and calculate the initial residuals as
)0)0( ˆˆ βXYe  . Rank these residuals in 

ascending order. Using the censoring mechanism inherent in the data set, reassign the ranks 
using the scores described in equation (6). By design, the average of these new ranks is 1/2. 
Calculate the standard deviation of these new ranks and denoted it by  . Apply the scoring 
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where  is the bandwidth used to obtain stable estimates of 
adj

 . For moderate sample 

sizes, where the ratio of n to the number of parameters p exceeds 5,  = 0.8 yields stable 

estimates. For more details about the theory associated with equation (7), refer to the text by 
Hettsmanperger and McKean [15] 

Calculate the dispersion function 
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D  using equation (3) evaluated at 
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assumptions of   0)( duu
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  are true (see Appendix B for proof) and 
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Step (ii) Using the projection matrix              onto the column space of X , obtain the 
residuals at the 1

st
 iteration of the algorithm using the relation: 
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Step (iii) and (iv) are the same as in the existing algorithm displayed in Appendix A except 

that we use the notation 
)( k

adj
D and 

adj
̂  in place of 

)( k
D and 


̂ . We retain the notation 


β̂  

and 
s

̂ for the estimates of the regression coefficients. 

 
2.4 Bent Scores 

 
McKean, Vidmar, and Sievers [21] have demonstrated that a gain in power in rank based 
analysis based on Bent scores can be obtained by choosing the specific scoring function 
appropriate for data. In particular, they have used the B75 scoring for residuals that are 
positively skewed in a random drug screening experiment (upper quartile of the residuals are 
assigned a constant score while the remainder of the residuals are a linear function of their 
ranks). These scores are estimated diagnostically after the initial Wilcoxon fit to the data 
produced highly skewed residuals. By diagnostically it is meant that the histogram of the 
residuals obtained from the Wilcoxon fit is used to estimate a reasonable Bent score. The real 
purpose behind this procedure of retrospectively using the residuals to estimate the scoring 
function is to investigate what types of scores are appropriate for the data at hand and must 
be used with caution in the case of small sample experiments (McKean et al., [21]). 
 
In this work, we also investigate the impact of moderate censoring (up to 50-60%) on these 
scores for the censored observations as compared to the uncensored observations. If more 
observations are censored, the residuals generated by a Wilcoxon fit are likely to be positively 
skewed. By using a Bent score function (such as the B75 score function), we are down-
weighing the upper quartile tail of the residuals. The Bent scores are composed of two linear 
pieces; a linearly increasing piece followed by a flat piece as follows: 
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Here d denotes the proportion of the flat piece. For more information on how to generate 
scores, refer to Policello and Hettsmanperger [22]. The actual scores are standardized as in 
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(B75 scores) as an adjustment to the Wilcoxon fit reflecting the extent to which skewness 
occurs in the distribution of the residuals. 
 
 

3. RESULTS AND DISCUSSION 
 
3.1 Simulating the Data 
 
Simulation is conducted for the following three scenarios: 
(i)   The survival times come from a loglogistic distribution with non-proportional and non-

constant hazards for the covariate of interest. 
(ii)  The survival times come from an exponential distribution with constant and proportional 

hazards for the covariate of interest.  
(iii) The baseline error density is loglogistic but the hazards are proportional for the covariate 

of interest (discussed in brief only). 
 
The first scenario results in an accelerated failure time (AFT) model where we consider a 
covariate potentially influencing the survival time. In the log-linear scale, therefore, the error 
density follows a logistic distribution for which we use a Wilcoxon scoring function that is 
optimal for this distribution (in the uncensored case). Additionally, we make use of a Bent 
scoring function in the case of positively skewed residuals (when applicable) resulting from 
the initial Wilcoxon fit. In the scenario where the error distribution arises from an exponential 
distribution, both the parametric AFT as well as the Cox proportional hazards (PH) model are 
applicable. In the uncensored case, the Wilcoxon scores have an asymptotic relative 
efficiency of 75% when applied to exponentially distributed data (Hettsmanperger  and 
McKean, [15]). However, performance with censoring has not been evaluated and we assess 
performance in the case of 30% censoring. In the third scenario, we have the situation that 
the Cox PH model yielding proportional hazards for the covariate is most appropriate, though 
the baseline hazards are generated from the loglogistic distribution. Thus for this case an AFT 
model may not be the appropriate choice and incorrectly applying it will reduce the power. 
Still, we briefly assess the performance of using Wilcoxon scoring function when there is 50% 
censoring in the data just to get an idea of how much power is lost when a mis-specified 
method is used. 
 
For the first scenario mentioned in Section 1, we simulated data by generating 1 000 
independent data sets of sample size N=100 observations from a loglogistic distribution in the 
following way. First, the number of simulations M was calculated using the formula given in 
Burton, Altman, Royston, and Holder [23] which is: 
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where  was kept at 5 per cent level of accuracy of the true regression coefficient b. The 

value of   (standard deviation of the regression coefficient b) was obtained from 50 pilot runs 

of the simulation. For various values of coefficients b ranging from -2 to 2, M varied from 700-
900. So we set M=1 000 as the number of simulations. Performance evaluation measures 
such as bias of the estimate of the regression coefficient, mean square error of the estimate 
of the regression coefficient and coverage percentage of the estimate are evaluated by 
varying the strength of association of the covariate with the survival times, namely b = (-1, -
0.75, 0.75). The detailed steps used in simulating the data are provided in the Supplementary 
material.  
 
We have used R for writing the code. After verifying that our code, for uncensored data, 
yielded results same as obtained by using the R package Rfit written by Kloke and McKean 
[24], we modify it to incorporate censoring using our proposed algorithm in order to conduct 
the simulations. 



 
 

 

3.2 Simulation Results 
 
Table 1 displays the type I errors for these simulations. These results show that for our 
proposed method, the type I errors are inflated when there is more than 50% censoring in the 
data in the case of a loglogistic (LLG) error distribution though applying Bent scores alleviates 
them to a considerable extent (around 60%). Also, Wilcoxon scores yield inflated type I error 
rates when the underlying distribution is exponential (EXPL) for more than 30% censoring. 
 

Table 1.      Percentage Type I error rates for N=100, number of replications=10,000 

 Bent75  
      Scores 
___________ 

Wilcoxon 
Scores  

___________ 

Cox PH 
 

___________ 

Parametric 
AFT model 

___________ 

Logrank 
on response 

___________ 
Censor 

% 
LLG 

errors 
- 

1.41 
2.82

+
 

4.20
+
 

LLG  
errors 

EXPL 
errors 

LLG 
errors 

EXPL  
errors 

LLG 
errors 

EXPL  
errors 

LLG 
errors 

EXPL  
errors 

0 4.45 4.27 5.38 4.93 5.08 4.89 5.16 5.00 
30  4.64

+
 5.68

+
 5.25 5.27 5.44 4.15 5.04 5.05 

50 6.57
+
 12.60

$
 5.03 4.79 5.64 3.34 4.95 5.07 

60 11.01
$
 18.88

$
 5.00 4.79 5.89 3.37 4.85 5.02 

+  
Power simulations are conducted for these scenarios and then compared to the standard approaches 

$ 
 Situations with highly inflated alpha are not considered in the simulations 

  
Only those cases in which the empirical type I error rates are close to the nominal alpha of 
5% are considered for generating graphs for comparing the power of the proposed method 
with the traditional approaches. Power graphs for the first scenario (loglogistic distribution with 
non-proportional hazard) are displayed in Figure 1(a) through Figure 1(c) for three different 
levels of censoring (30%, 50%, and 60%). The power graph for the second scenario 
(exponential distribution with proportional and constant hazard with 30% censoring) is 
displayed in Figure 1(d). Analogously, Table 2 displays the numerical values for the power 
calculations shown in Figure 1 (a) through (c). Table 3 displays the simulations representing 
the second (Figure 1 (d)) and third scenarios (discussed briefly). In these tables, the 
abbreviations used are: BS = Bent scores, WS = Wilcoxon scores, AF = parametric AFT 
model, PH = Cox proportional hazards model, LR = logrank scores. 
 
Table 2.     Power for N=100; # of replications=1000; distribution=loglogistic (Figure 1(a) – (c)) 
 
Reg 
Coef 

Power 

30 % censoring 
______________________________ 

50 % censoring 
____________________________ 

60 % censoring 
_____________________ 

WS AF PH LR BS75 WS AF PH LR BS75 AF PH LR 

0.00 4.5 
16.8 
55.6 
87.8 
98.8 
100.0 

5.4 5.3 5.0 2.8 5.0 5.7 5.0 4.9 4.2 5.9 5.0 4.9 
0.20 23.8 16.1 17.1 8.6 16.5 20.4 15.9 14.4 9.8 17.3 12.8 13.5 
0.40 64.3 52.3 53.4 34.6 51.4 55.0 43.4 43.5 31.2 49.5 37.9 36.3 
0.60 91.7 84.1 83.8 66.4 84.0 85.5 75.6 73.6 65.6 78.8 68.2 66.5 
0.80 99.0 97.2 96.9 88.0 96.4 97.0 92.0 91.5 85.6 95.1 87.2 85.7 
1.00 100.0 99.5 99.6 98.8 99.6 100.0 98.3 98.4 96.9 98.8 97.1 95.7 

 
From Figure 1 and the tables, for the first scenario which represents non-proportional 
hazards, Wilcoxon scores provide power somewhat less than what is obtained from a 
parametric fit of an AFT (using the loglogistic distribution) model for 30% and 50% censoring 
in data. However, they do provide power slightly more than the (incorrectly applied) PH and 
LR methods. In case of 50% censoring, the B75 scores yield considerably less power than 
the Wilcoxon scores. For 60% censoring, the Wilcoxon scores cannot be used as the type I 
error is inflated and using the conservative B75 scores maybe the only alternative. As 
expected, an incorrectly specified Cox PH model performs less powerfully than our proposed 
method (in the case of 30-50% censoring) as does the GLM using logrank scores on the 
response whereas the parametric AFT model performs best.  
 
For the second scenario which represents constant and proportional hazards arising out of an 
exponential distribution, the Wilcoxon scores perform relatively well compared to the 
parametric model, the Cox PH model, and the GLM using logrank scores (as demonstrated 



 
 

 

by Howard and Koch [2]) on the response for 30% censoring in data. Again this is expected 
because an exponential distribution is a special case for which both PH and parametric AFT 
models are appropriate (with the regression coefficients related to each other). 
 
Table 3.      Power for N=100; # of replications=1000; Second (Fig 1(d)) and third simulation 
scenario 
 
Reg 
Coeff 

                                                     Power   

 
 

Scenario 2: Exponential Distribution [30 % censoring]  Scenario 3: [50 % censoring] 
 

BS75 WS AF PH LR  WS PH LR 

0.00 2.9 5.8 
9.8 

21.8 
40.8 
63.4 
81.6 
90.6 
97.1 
99.3 

100.0 

4.2 5.2 5.1  5.0 
7.4 

18.2 
30.9 
46.6 
62.6 
77.4 
85.6 
92.4 
96.7 

5.0 5.0 
0.25 6.3 8.4 9.9 8.6  7.1 8.0 
0.50 20.4 20.8 22.3 22.8  21.4 20.8 
0.75 34.4 43.0 45.3 44.1  38.5 39.1 
1.00 53.6 68.9 69.9 66.6  60.2 58.5 
1.25 68.0 85.5 85.7 84.5  75.4 77.4 
1.50 84.0 95.8 95.8 93.9  87.0 90.3 
1.75 96.3 98.8 98.2 98.5  94.0 96.7 
2.00 99.1 99.9 99.7 99.4  98.8 98.6 
2.25 99.9 100.0 100.0 99.9  99.7 99.7 

 
For the third scenario which represents proportional hazards for the covariate but has non-
constant baseline hazards (generated from a baseline loglogistic error density with 50% 
censoring), the Cox PH and the GLM on logrank scores have expectedly much higher power 
than the (mis-specified) log-linear model Wilcoxon scores. The parametric AFT model is not 
used here as in this case it is well known that in this scenario it will not perform well. To 
further assess the performance of the proposed method, performance evaluation measures 
such as bias of the estimate of the regression coefficient, mean square error of the estimate 
of the regression coefficient and coverage percentage of the estimate were used. In all 
scenarios, we obtained low bias, low mean square error, and adequate coverage (at least 
87% in all cases). Table 4 displays the results of these performance evaluation measures for 
the errors arising out of the loglogistic distribution (representing the first scenario) for three 
different values of the shape parameter, namely, s = {0.25, 0.5, 1}. For s = 0.25 and 0.5, the 
hazard function first increases and then decreases whereas for s = 1, the hazard is 
decreasing. Such hazards are often encountered in clinical trials related to cancer research 
where the loglogistic and lognormal distribution are used extensively to account for non-
monotone hazard functions. In such trials, it is important to summarize the improvement in 
median survival time following a treatment intervention as opposed to merely specifying a 
hazard ratio from using a Cox PH model (Royston, [25]).  
 
Table 4 Performance evaluation of the proposed method (N=100, replications=1000) 

Scenario )ˆ(b  SE )ˆ(b  Bias )ˆ(b  % Bias )ˆ(b  MSE %Coverage % power 

50% censored 
True b = -0.75 

s = 0.5 

 
-0.7350 

 
0.0344 

 
0.0150 

 
1.9960 

 
0.0014 

 
91.4 

 
58.4 

50% censored 
True b = 0.75 

s = 0.25 

 
0.7464 

 
0.0225 

 

 
-0.0036 

 
0.4827 

 
0.0005 

 
95.5 

 
95.1 

50% censored 
True b = 0 
s = 0.25 

 
-0.0036 

 
0.0225 

 
-0.0036 

 
* 

 
0.0005 

 
95.5 

 
4.5 

50% censored 
True b = -1 

s = 1 

 
-1.0097 

 
0.0638 

 
-0.0097 

 
0.9658 

 
0.0041 

 
88.1 

 
43.1 

* indicates % bias cannot be calculated as the true value of b = 0 yields a divide by 0 error. AFT



 

 

 
Figure 1 Power graphs for the first (Loglogistic distribution; 30% - 60% censor) and second (Exponential distribution; 30% censor) scenario  



 

 

3.2 Pancreatic Cancer Study Example 
 
We will demonstrate our method on a data set consisting of 106 patients who were 
prospectively identified with suspected pancreatic cancer over a 34-month period at the 
Division of Gastroenterology and Hepatology at the University of Birmingham at Alabama for 
stent placement [26]. The type of stent placed (plastic or metal) depended on certain 
evaluation criteria such as presence or absence of liver metastases, whether or not surgery 
was planned, and the Karnofsky score (K-score)for the patient. The K-score allows patients 
to be classified in terms of their functional impairment thereby allowing doctors to assess the 
prognosis in each patient. It is measured on a continuous scale of 0 to 100 in increments of 
10 with 100 indicating that the patient shows no evidence of diseases and 0 indicating that 
the patient faces certain death. Scores between 0-40 represent various gradations of 
disability and scores between 50-70 represent gradations of self-care ability with assistance. 
Scores ranging between 80-100 represent gradations of ability to conduct normal activity. 
Generally, patients with a K-score of more than 70 underwent metal stent placement while 
those with a score of 70 or lower underwent plastic stent placement, though there were 
some exceptions. The response measured is the time to death in months. Though other 
demographic variables and comorbidities are recorded as covariates, prior studies in this 
field suggest that once the prognosis is made, these are not important predictors of time to 
death. Thus, we shall initially consider only the K-score as a single continuous predictor of 
time to death, and later adjust for age as a covariate. This data set contains 68 events 
(64.2% deaths) while 38 observations (35.8%) were censored due to loss to follow-up. It is 
expected that all censored observations will die at some stage of pancreotibiliary 
malignancy, however, due to loss to follow-up there is no option but to treat these 
observations as censored, thereby carrying incomplete information about these patients.  
 
To analyze these data, various parametric AFT models were fit using the exponential, 
Weibull, loglogistic, lognormal, and generalized gamma distributions. Table 5 displays the 

results of these parametric fits with the parameter estimate b̂ representing increase in 

logarithm of time to death per unit increase in the K-score. It can be seen from the log-
likelihood and AIC values in this table, that the exponential distribution offers the most 
parsimonious fit to this dataset. As the K-score has gradations in increments of 10, we also 
evaluated the increase in time to death per 10-unit increase in the K-score. For the 
exponential distribution this value was 1.669 (95% CI: 1.438-1.937). We also fit a Cox PH 
model to this data and this resulted in a hazard ratio (HR) of -0.047 9 (standard error = 0.008 
2) per unit increase in the K-score. This corresponds to a HR for time to death of 0.618 (95% 
CI: 0.527-0.728) per 10-unit increase in the K-score indicating that patients with a higher K-
score live longer than those with a lower score. All model fitting assumptions were assessed 
as per the methods available in standard statistical texts.  
 
Table 5.      Parametric fit for the Pancreatic Cancer data  (N=106) with K- score as a 
continuous predictor 
Distribution )ˆ(b  SE )ˆ(b  Scale/ 

Shape 

P value LL 
 

AIC 
e

b̂10 [95% CI] 

Loglogistic 0.0606 0.0109 scale=0.743 <0.001 -134.853 275.707 1.833 [1.480-2.270] 
Lognormal 0.0601 0.0104 scale=1.283 <0.001 -133.956 273.913 1.824 [1.488-2.236] 
Exponential 0.0512 0.0076 scale=1 <0.001 -134.554 273.109 1.669 [1.438-1.937] 

Weibull 0.0511 0.0078 scale=1.005 
shape=1 

<0.001 -134.553 275.105 1.667 [1.431-1.942] 

Generalized 
Gamma 

0.0566 0.010 2 scale=1.187 
shape=0.383 

<0.001 -133.569 275.138 1.761 [1.442-2.151] 

 



 

 

Finally, we fit our proposed method that uses full non-parametric regression using Wilcoxon 

scoring on the residuals, to this data set (also shown in Table 6). We obtained b̂ = 0.045 4 

(S.E )ˆ(b = 0.007 67, P value < 0.000 1) as the parameter estimate for every one unit increase 

in the K-score on the logarithmic scale. This corresponds to exp(10 b̂ ) = 1.555 times 

increase in the time to death per 10-unit increase in K-score (95% CI: 1.314-1.839) again 
indicating significantly higher longevity for patients with high K-scores as compared to 
patients with low K-scores. 
 
The Wilcoxon fit of the residuals revealed five outliers with high negative values for the 
residuals. However, these correspond to five patients who were lost to follow-up immediately 
after the day of prognosis and hence their survival time was entered in the database as 
0.033 months (1 day). All five patients had high Karnofsky scores (four had a score of 90 
while one had a score of 80) and these observations correspond to patients about whom the 
least information was available. The gastroenterologists wanted to ensure that these 
observations do not influence the interpretation in any way and hence they were removed 

from the data set. The resulting Wilcoxon fit yielded an estimate of b̂ = 0.046 6 (close to the 

earlier estimate of 0.045 4) with a standard error of 0.008 39 (P value < 0.000 1) thereby 
demonstrating the robustness of the Wilcoxon fit. 
 
As part of a follow-up analysis, the gastroenterologists also wanted to assess the effect of K-
score on mortality after adjusting for age. Table 6 shows the results of these analyses in 
comparison to the best fit parametric (lognormal) AFT model. The lognormal AFT model 
(second column) suggests that after adjusting for age, every ten unit increase in K-score 
increases the time to death by a factor of 1.795 whereas the corresponding value for this 
factor using the proposed model with Wilcoxon scores, is 1.361. However, the lognormal fit 
also shows age as statistically significant (P value=0.041 9) implying that after adjusting for 
the K-score, every 10-year increase in age decreases the time to death by a factor of 
0.773(95% CI: 0.603-0.991), a result that is found to be somewhat surprising by the 
gastroenterologists. On the other hand, our proposed method with Wilcoxon scoring (third 
column) does not show age to be statistically significant (P value=0.119 1) after adjusting for 
K-score. The ten-year estimate is found to be 0.8564 (95% CI: 0.705-1.041). The fourth 

column in Table 6 shows how the results would change if the Normal scores )()(
1

uu 




were used instead of the Wilcoxon scores. If the lognormal distribution were the best fit for 
the data, then an AFT model would have normally distributed errors, and we could expect 
comparable results by adopting the Normal scores. On doing so, we find that the parameter 
estimates for age and K-score are now qualitatively similar to the lognormal model.   
 
Table 6 Parametric and non-parametric fit with two covariates (N = 101) 

Covariate specifics Lognormal AFT Proposed method 
(Wilcoxon scores) 

Proposed method 
(Normal scores) 

 
Intercept 

b0 -0.7241 -0.7259 1.5771 
SE(b0) 1.1609 0.9539 0.8249 
P value 0.5328 0.4466 0.0559 

 
Age 

b1 -0.0258 -0.0155 -0.033 6 
SE(b1) 0.0127 0.0099 0.0098 
P value 0.0419 0.1191 0.00 6 

 
K-score 

b2 0.0585 0.0459 0.0308 
SE(b2) 0.0110 0.0085 0.0073 
P value < 0.001 < 0.001 < 0.001 

 
 



 

 

4. CONCLUSION 
 
Rank based non-parametric methods provide a robust alternative to parametric procedures 
in terms of their sensitivity to outliers and positive breakdown values for the estimates. In the 
uncensored case, it is known that the asymptotic efficiency of these methods depends on 
the optimality of the scoring function used to minimize the dispersion function of the 
residuals. The Wilcoxon scoring function is optimal for errors from a logistic distribution and 
reasonably efficient for errors from a normal distribution in a regression setting and hence 
can be extended to loglogistic and lognormal survival data. The proposed non-parametric 
method of modifying the Newton-type algorithm used to estimate the regression coefficients 
appears to work well for moderate random right censoring (up to 50%) in survival data both 
in the case of proportional and non-proportional hazards. The quality of the model can be 
assessed by performing a diagnostic check of the distribution of the residuals arising out of 
the Wilcoxon fit. For severely skewed residuals, the Bent scoring function can be used as an 
adjustment for higher levels of censoring in the data. In the simulations conducted by us, the 
B75 scores provided less power than the other methods. In practice, however, one may 
have to study the distribution of the residuals in greater detail and incorporate other types of 
Bent scores for modeling particular types of data sets. This procedure is akin to checking the 
model fits from a Cox PH model or from a parametric fit of the model and should be viewed 
as a diagnostic checking tool.  
 
In the limited scenarios that we have tested, this method has yielded estimates of the 
regression coefficients that have low bias, low mean square error, and adequate coverage. 
In cases where the proportional hazards assumption is not met and there is no clear winner 
among the popularly used parametric distribution, our proposed method may provide a 
reasonable alternative non-parametric solution that yields robust estimates of the regression 
coefficients. Both continuous and categorical predictors may be used allowing the 
practitioner to draw inferences about the significance of one covariate after adjusting for 
other covariates in a non-parametric way (though in our simulations we have incorporated 
only continuous predictors), something which cannot be done in a simple stratified analysis 
of the standard Kaplan Meier method. It remains to be assessed how this method will 
perform in the presence of interactions among covariates. This method has also been 
applied to a real-life data set from a Pancreatic cancer study and it proved to be a robust fit 
to the outliers present in that data set. Future work aims to compare the performance of this 
method with the other theoretical nonparametric and semiparametric methods mentioned in 
Section 1. 
 

 
 
CONSENT (WHERE EVER APPLICABLE) 
 
The real-life example discussed is from a previously published abstract and does not require 
consent from any patients. 
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APPENDIX 

 
A. Newton algorithm by Kapenga et al., [19] 

i. Obtain an initial estimate of the regression coefficients, 
)0(

β̂ (say, least squares 

estimate) and calculate the initial residuals as 
)0()0( ˆˆ βXYe  . Let

)0(
ˆ


 denote the 

initial estimate of


 based on these residuals. Calculate the dispersion function 
)0(

D

evaluated at 
)0(

ê . 

 

ii. Using the projection matrix 
TT

XXXH
1

)(


 onto the column space of X , obtain the 

residuals at the 1
st
 iteration of the algorithm using the relation: 

 

 )}(
)0()0()1(

ˆ{ˆˆˆ eHaee R


   

  where )}(
)0(

ˆ{ ea R  denotes the vector whose i
th
 component is }ˆ{ )(

)0(

i
Ra e . 

 

iii. Calculate the dispersion function 
)1(

D evaluated at 
)1(

ê . If 
)0()1(

DD  , this step is 

considered successful. If not, a linear search can be made along the direction to find 
a value that minimizes D . In general, the dispersion function at the k

th
 step is 

denoted by 
)( k

D and a rule to halt the algorithm is established by specifying a 

tolerance 
D

  such that  

 
Dk

kk

D

DD








)1(

)1()(

  



 

 

iv. If 
)( k

D obtains the minimum value for the dispersion function, then find 
)()(

ˆˆ kk
eYY  . Then the optimal estimate of the regression coefficients can be 

obtained using the relation 

 
)(ˆ1

)(ˆ k
YXXXβ 





  

 

v. Obtain the final estimate of 


̂ and use it to calculate the standard error of 


β̂ using 

(5). Obtain 
s

̂ by finding the median of 
)(

ˆ
k

e . 

 
 

B.  Meeting assumptions of Section 2.1 

With reference to the proposed method meeting the assumptions in Section 2.1, 
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Similarly, 
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