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Aims: To establish the common rule of combinatorics of exons during RNA splicing. 
Study design: Inferring of the plausible statistical model of combinatorics of exons during RNA splicing 
from annotated models of human genes. 
Place and Duration of Study: Department of Genetics (Belarusian State University), Proteome and 
Genome Research Unit (Luxembourg Institute of Health), Department of Genetics (Lomonosov Moscow 
State University) and Moscow Center of Experimental Embryology and Reproductive Biotechnologies, 
between January 2017 and July 2019. 
Methodology: We used human mRNA and EST sequences from GenBank and linear models of the 
human genes from Ensembl, AceView, ECgene, NCBI RefSeq, UCSC Genome Browser and VEGA to 
calculate combinatorial index of human exons. We inferred the most plausible statistical model describing 
the distribution of combinatorial index of human exons using Clauset’s mathematical formalism. 
Predictors of the value of combinatorial index and the functional outcomes of predefined behavior of 
exons during splicing were also determined. 
Results: Power-law is the most plausible statistical model describing the combinatorics of exons during 
RNA splicing. The combinatorial index of human exons is defined more than 90% by the 138 features that 
have different importance. The most important of these features are abundance of exon in transcripts, 
strength of splice sites, rank of exon in transcripts and type of exon. Analysis of the marginal effects 
shows that the same feature, but its different values have an unequal influence on the combinatorial index 
of human exons. Power-law behavior of exons during RNA splicing pre-determines structural diversity of 
transcripts, low sensitivity of splicing process to random perturbations and its high vulnerability to 
manipulation with highly combinative exons. 
Conclusion: Exons widely involved in alternative splicing are part of the common power-law 
phenomenon in human cells. The power-law behavior of exons during RNA splicing gives the unique 
characteristics to human genes. 
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1. INTRODUCTION 15 

 16 

Alternative splicing is a unique process of unzipping genetic information archived in the nucleotide 17 
sequence of the gene. This is widespread phenomenon in human cells and tissues. It was estimated that 18 
92-94% of human genes produce appreciable levels of two or more distinct populations of RNA isoforms 19 
[1]. Alternative isoforms of transcripts may appear at the level of single cells or population of cells of the 20 
same type [2,3], different tissues of the same individual or the same tissue but in different individuals [1,4] 21 
and at different stages of human development [5,6]. 22 
The main outcome of the alternative splicing is significant expansion of the complexity of the transcriptome 23 
with limited starting material. Through this process, a single gene can produce a wide variety of RNA 24 
molecules. These molecules may be translated into a variety of structurally and functionally distinct proteins 25 
[7]. Moreover, some of these molecules can be noncoding and play regulatory role [8]. The set of such 26 
diverse products of the same gene often forms a sub-network, which is tightly integrated into global cellular 27 
regulatory network and provides flexibility in adaptation and functioning of the cell [9,10]. 28 
Results of studies in recent years, obtained by high-throughput OMICS-technologies, have substantially 29 
expanded our understanding of alternative splicing and its biological role. These results also suggest that 30 
we see yet only the tip of the iceberg of the entire transcriptome complexity of a cell. The ever-growing set 31 
of empirical data in this area requires the elucidation of common principles or rules by which the 32 
transcriptome of a cell is formed and functions. We hope that through the knowledge of such rules the 33 
further progress in this area will be achieved. Over the last decade there have already been some 34 
successes in this direction. In particular, some basic properties of the “splicing code” were disclosed 35 
[11,12]. However, this knowledge is not enough for a full understanding of the rules of the combinatorics in 36 
exons and systemic factors that drive and control the splicing process. 37 
Analysis of the human transcriptome shows that the number of various splicing events involving exon may 38 
vary significantly for different exons. There exists a large set of exons that are involved only in single 39 
splicing events. On the other hand, the human transcriptome contains a limited number of exons, which 40 
take part in many different splicing events. In this regard, we set a goal to figure out whether there are any 41 
principles of local combinatorics of exons and if so, where and how it is predestined. 42 
In the context of this article, the term “local combinatorics of exons” refers to pairwise splicing events 43 
involving given exon during formation of different RNA isoforms. In contrast, the term “extended 44 
combinatorics of exons” refers to splicing of different exons during formation of given RNA isoform. For the 45 
purposes of this article, we also use term “combinatorial properties of exons” which means a set of 46 
properties of exons which predetermine the diversity of their alternative splicing. Moreover, we introduced 47 
the “exon’s combinatorial index” (ECI) which is simple equivalent to a topological index “node degree” of 48 
graph theory. In further analytical work we used both a total-degree of exon (“total” exon’s combinatorial 49 
index or simply total-ECI) as well as its decomposed variant (separately ingoing and outgoing degrees, or 50 
in-ECI and out-ECI, respectively). Herewith total-ECI means the sum of all (ingoing as well as outgoing) 51 
unique splicing events that involved exon. The terms in- and out-ECI refer to the sum of all ingoing or 52 
outgoing unique splicing events that involved exon, respectively. 53 
 54 

2. MATERIAL AND METHODS / EXPERIMENTAL DETAILS / METHODOLOGY 55 

 56 

For the purposes of this paper, human mRNA and ESTs sequences deposited in GenBank were 57 
downloaded via FTP-server of the UCSC Genome Browser. These sequences were aligned by BLAT [13] 58 
against GRCh38/hg38 reference assembly of the human genome and were subjected to four levels of 59 
filtration: records with only one aligned block, mismatches, exons and/or introns length below the 5

th
 60 

quantile of distribution (23 and 88 nucleotides in length for exons and introns, respectively) were deleted. 61 
The resulting collection of sequences we called Dataset 1 with 1093522 records. Additionally, we trimmed 62 
terminal exons of sequences from Dataset 1 and formed Dataset 2 with 627733 records. 63 
Statistical modeling and statistical analysis of the above mentioned datasets was carried out using R 64 
programming language. The key steps of this analysis are described in the relevant sections of RESULTS. 65 
 66 

3. RESULTS AND DISCUSSION 67 

 68 

3.1 RESULTS 69 
3.1.1 Power-law behavior of local combinatorics of human exons 70 
Our work was based on the analysis of the seven data sets: full list of human mRNA and EST sequences 71 
from GenBank [14] and linear models of the human genes from Ensembl [15], AceView [16], ECgene [17], 72 
NCBI RefSeq [18], UCSC Genome Browser [13] and VEGA [19]. For a more compact representation and 73 
future use these data were converted into exon graphs. Each of exon graphs is presented by a set of exons 74 



 

(vertices or nodes of a graph) connected to each other via set of splicing events (edges or links of a graph) 75 
[20]. Such a graph is directed acyclic graph in the sense that the exons present in any mature transcript of 76 
gene are retained in the correct 5’ to 3’ linear order and reverse edges are prohibited. 77 
The results of topological analysis of reconstructed exon graphs suggest that values of the ECI follow a 78 
power-law distribution with heavy right tail: the vast majority of exons have low value of the ECI, while a 79 
small part of the exons are characterized by very high value of this index (Fig. 1A). However, power-law is 80 
only one of the members of broad family of distributions with heavy right tails [21]. In addition, the selection 81 
of the correct statistical model for that kind of data is not a trivial task because of the incompleteness of the 82 
empirical biological data and their high variability (especially in the area of heavy tail). Therefore, we had to 83 
use three-step approach based on the mathematical formalism developed by Clauset A. et al. [22,23] to find 84 
appropriate statistical model and to check our preliminary supposition. 85 
 86 

 87 
Fig. 1. Removing of uncertainty with the terminal exons leads to a clear manifestation of the power-88 
law component in the human transcriptome. (A) Frequency (upper panel) and complementary CDF 89 
(lower panel) plots of the ECI values distribution from whole set of human transcripts and exons. 90 
Truncated power-law with an exponential cut-off is the best statistical model for this empirical 91 
distribution among the set of competitive models of distributions with heavy right tail. (B) 92 
Frequency (upper panel) and complementary CDF (lower panel) plots of the ECI values distribution 93 
after removing of the terminal exons from transcripts and data reanalyzing. For these transformed 94 
data, there exists a clear superiority of the power-law model as compared to other statistical 95 
models. (C) Removing of the terminal exons from transcripts leads to significant change in ECI 96 
values of exons (upper panel). Herewith the exons with initially high values of the ECI underwent the 97 
most profound changes (lower panel). 98 
 99 
First, we rejected those statistical models that clearly did not fit the empirical distributions and chose five 100 
closest models: power-law distribution, truncated power-law distribution (or power-law with exponential cut-101 
off), exponential distribution, stretched exponential distribution (or complementary cumulative Weibull 102 
distribution) and log-normal distribution. Next, selected statistical models were fitted to the empirical 103 
distributions according to “xmin” paradigm [22]: only heavy tail of empirical distribution was the subject of our 104 
attention because it contains the most outstanding sub-set of values of the distribution. Finally, Kolmogorov-105 
Smirnov test and log-likelihood ratio test were used to assessment of the plausibility of the statistical 106 
hypothesis and for direct comparison of alternative statistical models [22,24,25]. 107 
The above mentioned approach allowed us to detect several features of empirical distributions. First, the 108 
results of our statistical modeling permit to postulate that values of the ECI of human exons follow a 109 
truncated form of the power-law with exponential cut-off (Fig. 1B, Table 1). Herewith exponential 110 
component of distribution may be substantially reduced by filtering out of the 5’- and 3’-terminal exons (with 111 
in-ECI = 0 and out-ECI = 0, respectively) together with edges and first neighbours from exon graphs (data 112 
not shown). However, it should be noted that for the three data sets (gene models from AceView, NCBI 113 
RefSeq and VEGA) there remains uncertainty when truncated power-law is comparing with stretched 114 



 

exponential or log-normal models: log-likelihood ratio test does not favor one model over the other and only 115 
Kolmogorov-Smirnov test gives a slight preference for the power-law with exponential cut-off. Second, the 116 
beginning of the heavy tail (lower bound) for different data sets ranges from 5 to 15. Third, in the frame of a 117 
truncated power-law model the scaling parameter α lies within the range from 2.378 to 7.248 and rate 118 
parameter λ falls into the broad range from 5.713×10

-9
 to 1.77×10

-1
 for different data sets. 119 

 120 
Table 1. Log-likelihood ration test (A) and statistical tests on plausibility (B) confirm the presence of 121 
a power-law component in the human transcriptome 122 
A 123 

Dataset 
Basic 
model 

LLR 
test 

Competing statistical model 

Power-law 
Truncated 
power-law 

Yule- 
Simon 

Exponential 
Stretched 

exponential 
Log- 

normal 
Poison 

 Dataset 1 

Power-law 
R – -446.6 -20.6 41.22 -17.7 -19.6 51.03 

p – 3.0e-196 2.3e-94 0.0 2.8e-70 3.5e-85 0.0 

Truncated 
power-law 

R 446.6 – 30.5 47.34 20.6 30.9 51.23 

p 1 – 0.0 0.0 0.0 0.0 0.0 

 Dataset 2 

Power-law 
R – -0.8 4.2 11.12 3.6 -0.6 13.64 

p – 0.2 2.3e-05 0.0 3.4e-04 0.5 0.0 

Truncated 
power-law 

R 0.8 – 4.8 11.37 4.0 0.8 13.76 

p 1 – 2.0e-06 0.0 5.2e-05 0.4 0.0 

B 124 

Dataset Test 

Competing statistical model 

Power-law 
Truncated 
power-law 

Yule- 
Simon 

Exponential 
Stretched 

exponential 
Log- 

normal 
Poison 

 Dataset 1 

AIC 345205.6 344314.5 345304.3 363155.6 344595.3 344593.7 897718.6 

BIC 345214.5 344332.3 345313.2 363164.5 344613.1 344611.5 897727.5 

KS distance 0.01715 0.02909 0.01553 0.17865 0.03159 0.03015 0.23341 

 Dataset 2 

AIC 39064.8 39065.2 39158.1 40201.8 39140.2 39065.6 42408.7 

BIC 39072.7 39081.1 39166.0 40209.7 39156.1 39081.4 42416.6 

KS distance 0.00188 0.04049 0.01658 0.05476 0.04989 0.05232 0.08236 
AIC - Akaike information criterion; BIC - Schwarz Bayesian criterion; KS distance - Kolmogorov-Smirnov distance; LLR - 125 
log-likelihood ration. 126 
 127 
In fact, observed empirical distributions with power-law component cannot be produced by random 128 
attachment of exons during splicing step of gene expression (Fig. 1C). On the other hand, this class of 129 
distributions can be easy generated by preferential attachment process [26]. In a frame of preferential 130 
attachment model, the different exons have different attractiveness to connect other exons. The results of 131 
our modeling indicate that artificial data can be fitted to any of our empirical data set by varying of power 132 
parameter α (Fig. 1C). However, exact nature of the observed difference of exon attractiveness is not taken 133 
into account yet. This question is investigated below. 134 
3.1.2 Predictors of the value of ECIs in human transcriptome 135 
It seems to be true that almost all (if not all) processes in the cell are controlled by complex multilevel 136 
mechanisms [27,28] and splicing process is unlikely to be the exception. So, we hypothesized that there 137 
isn’t one or some features (predictors) which determine the value of ECI but this index is determined by 138 
multiple predictors. To find out of such predictors, we assembled a compendium of 22114 features of the 139 
target exons (ECIs of which are the objects of analysis) and their upstream and downstream first 140 
neighboring exons and adjacent introns. This compendium included seven classes of features: abundance 141 
of exons in transcripts, connectivity of first neighboring exons, sequence’s features of target exons, 142 
sequence’s features of first neighboring exons, length of adjacent introns, rank of exons in transcripts and 143 
functional type of target exons (Fig. 2). We took the Ensembl data set as the main object of research, and 144 
the other sets of data were used for cross-validation of the results of the study. The relationship between a 145 
feature and ECI as well as contribution of feature to the value of the ECI was assessed by pairwise 146 
Spearman’s rank correlation coefficient and by data mining. Data mining was based on machine leaning by 147 
regression random forests. This learning algorithm was chosen by comparison with the two other algorithms 148 
(lasso regression and generalized boosting regression) as the most suitable for the task. 149 
In fact, for any gene of interest the presence of multiple exons, wide spectrum of produced transcripts and 150 
different abundance of exons in these transcripts are minimal prerequisites to development of the non-151 
equivalency of ECI value of exons. Most interesting is the situation with the abundance of exons in 152 
transcripts. On the one hand, there exists a high positive correlation between the value of ECIs and 153 
abundance of target exons in transcripts and data mining revealed the high importance of this predictor. 154 



 

However the converse statement is not true: not all exons widely represented in transcripts are 155 
characterized by high combinatorial capacity. Moreover, profiles of the marginal effects point out to the 156 
unequal importance of the different values of this feature in the determination of the ECI. On the other hand, 157 
the abundance itself is determined by multiple factors as was shown early [11]. 158 
Second class of features (connectivity of first neighboring exons) has a moderate or little effect on the value 159 
of ECI as was revealed by correlation analysis and data mining by random forests. In general, exon graphs 160 
are disassortative (with value of disassortativity index up to -0.247): the exons with high values of ECI 161 
prefer to attach the exons with low value and vice versa. 162 
 163 

 164 
Fig. 2. Small subset of features from exons and flanking introns may determine the value of the ECI 165 
in tissue-independent fashion. (A) Features of the five different classes (sequence features, 166 
sequence-related features, functional features, epigenetic features and features related to structure 167 
of gene) were extracted from three classes of the genomic/RNA elements: target exon and its 168 
flanking intronic sequences, upstream first neighboring exons and their flanking intronic 169 
sequences and downstream first neighboring exons and corresponding flanking intronic 170 
sequences. (B) Importance of these features for the prediction of the ECI value was inferred from 171 
random forest classification by Gini index and from random forest-based multiple nonlinear 172 
regression by mean square error. (C) Random forest-based classification shows that the maximum 173 
accuracy in prediction of the ECI achieved by using no more than top-20 features. (D) Top-20 174 
features permits to achieve a maximum in explanation of the ECI variance and high accuracy in 175 
prediction of the ECI values by random forest-based multiple nonlinear regression. 176 
 177 
In our compendium, classes sequence’s features of target and first neighboring exons include length of 178 
exons, linear density of minimal free energy of exons, strength of the 5‘ and 3’ splice sites, regional counts 179 
of the short motifs (1-3 nucleotides), frequency of the known splicing enhancer and silencer motifs and 180 
count of the new predicted motifs associated with high combinatorial exons (MAHCE). One of our 181 
approaches in identification of MAHCE was correlation-based approach. This approach allowed us to 182 
cluster a plenty of sequences discarding irrelevant oligomers. In turn, the decrease in the number of the 183 
unique sequences led to a reduction in the dimension of the space of variables and allowed to use of 184 
machine learning algorithms for the identification of important predictors. 185 
Despite the large number of studied structural features as well as cis-elements, carefully carried out 186 
analysis and the desire to identify strong predictors we didn't find such. The most significant was only a 187 
relationship between the strength of the splice sites and the value of the ECI. It should be noted that there 188 
is a clear cross-relationship between the value of the in- or out-ECI and the strength of the respective splice 189 
site as well as increased correlation at use of the total (overall) score of the strength of splice sites. 190 
Herewith the profiles of marginal effects of the strength of splice sites of the target and first neighboring 191 
exons are completely different. The remaining cis-elements have a moderate or little effect on the value of 192 
ECI (wherein both the total-ECI and the in- and out-ECI) as was revealed by correlation analysis and data 193 
mining by random forests. A similar situation was observed in the case of parameters such as length of 194 
exons and stability of their secondary structure. 195 
From next class of features, we just studied the minimal, maximal and mean length of the adjacent introns 196 
in relation to value of the ECI. These predictors were successfully selected by feature selection algorithm as 197 
important for prediction of the ECI, but with low contribution (no more than 9.33% in the average increase in 198 
squared out-of-bag residuals), that is agree with results of correlation analysis. 199 



 

One of the most informative and important features in prediction of the value of ECI was position of exon in 200 
transcripts. We used two different approaches to find out of this metric: averaged short (total-, in- and/or 201 
out-) distance of exon to another exons in exon graph and direct determination of averaged exon position 202 
(exon rank) relative to start (5’-end) and/or to end (3’-end) in the transcripts of gene of interest. Simple ratio 203 
of these two parameters gives us the position of the exon relative to center of transcripts (the centrality of 204 
exon position in transcripts). The centrality of exon position was expressed either in relative units (where 1 205 
is a relative center of transcripts, which include the exon of interest) or in absolute distance (measured in 206 
the number of exons) from the center of transcripts. In last case, zero position means the center of 207 
transcripts which include the exon of interest. If exon located left of center (closer to the 5'-end of 208 
transcripts), its position has a negative sign, otherwise a positive sign. 209 
All exons with high values of total-ECI show nonrandom positional distribution and tend to occupy central 210 
position in transcripts (Fig. 3). Permutation of the values of predictors from this class of features increases 211 
more than 30% of squared out-of-bag residuals in a case of target exons, and more than 20% in a case of 212 
first neighboring exons. Again, as was mentioned for other features, profiles of the marginal effects point 213 
out to the unequal importance of the different values of this predictor in the determination of the ECI with 214 
clear transition point near to the central position. 215 
 216 

 217 
Fig. 3. The most important predictor of the ECI value of target exon is a structure of its upstream 218 
and/or downstream neighboring exon-coding genomic regions. (A) Genomic structure of the small 219 
part of UTY gene is used as example. Exon-coding genomic regions that belong to this part of gene 220 
are depicted as GR. The number of exons originated from each genomic region (size of group of 221 
overlapping exons, or SiGOE) is indicated in parentheses. Target exon is colored in dark blue. This 222 
exon has ECI = 10 and 70% of its splicing events happening with exons from two genomic regions 223 
GR_122975 and GR_122978. (B) Empirical distribution of sizes of groups of overlapping exons from 224 
human genome follows a power-law function. (C) The relationship between the ECI value of target 225 
exon and the average size of its neighboring upstream and/or downstream groups of overlapping 226 
exons. This relationship is close to the linear. (D) Marginal effects of size of neighboring upstream 227 
(USE) and downstream (DSE) groups of overlapping exons on the ECI value of target exon. The 228 
effect of size of overlapping group that owns the exon (TE) is also shown. 229 
 230 
Finally, it was studied the possible influence of evolutionary conservatism of exon and its functional type on 231 
the value of the ECI. We found that group of exons with high values of ECIs (≥10) characterized by an 232 
average level of conservatism. However there observed the low positive correlation between the 233 
conservatism of exon and value of its ECI and this variable was not selected as important by feature 234 
selection algorithm. As for functional type of exon, ANOVA and data mining by random forests confirm 235 
importance of this feature in determination of the value of ECI. In particular, there is a clear link between the 236 
multifunctionality (when exon is annotated as a multitype exon) of exon and high value of ECI and 237 
permutation of the values of this feature increases more than 30% of squared out-of-bag residuals. 238 



 

In summary, as it was originally supposed among the features we studied is no single predictor or a small 239 
group of predictors that would entirely determine the value of the ECI of human exons. On the contrary, the 240 
value of the ECI is defined more than 90% by the multidimensional space of predictors (138 features in a 241 
case of total-ECI of Ensembl exons) that have different importance. The most important of these predictors 242 
are abundance of exon in transcripts, strength of splice sites, rank of exon in transcripts and type of exon. 243 
Furthermore, analysis of the marginal effects shows that even the same predictor, but its different values 244 
have an unequal influence on the ECI. 245 
3.1.3 Exon graphs with power-law structure: the functional outcomes 246 
To establish the biological significance of power-law structure of the exon graphs, we compared this type of 247 
graphs with artificial full exon graphs on three criteria: diversity of the generated transcripts, flexibility of the 248 
alternative splicing and robustness to the random perturbations. In our modeling, we used sub-set of top-249 
100 exon graphs (in terms of the number of vertices) from Ensembl-based human transcriptome exon 250 
graph. These empirical exon graphs (which we called power-law exon graphs) have topology with power-251 
law component while our artificial full exon graphs do not have this component in the distribution of the ECI. 252 
As was expected, full exon graphs capable to produce a significantly more diverse transcripts than exon 253 
graphs with power-law component. For example, directed walk along the tree of exon graphs shows that full 254 
exon graphs generate in 6.6 fold more different transcripts than power-law exon graphs and in 210.4 fold 255 
more than it was experimentally verified (p = 1×10

-16
). However, the length of such transcripts is clearly 256 

smaller than the length of transcripts generated by power-law exon graphs as well as empirical transcripts. 257 
In addition, a full crawl of the power-law exon graphs shows that they have great hidden potential to 258 
generate a variety of transcripts, a superior variety of known transcripts in 1472.2 fold. Herewith this 259 
potential can be seen not only in the structural diversity, but in the ability to generate long transcripts: there 260 
are clearly visible two distant peaks compared with the empirical data. 261 
Second one in our interest was a flexibility of the alternative splicing with different types of exon graphs. We 262 
modeled the situation when any fraction of the ranked exons purposefully skipped or included in mature 263 
transcripts by splicing system. Power-law exon graphs are extremely sensitive to manipulation with top-264 
ranked exons: active involving or skipping even a small fraction of these exons into splicing process may 265 
substantially change the possibilities for the formation of a variety of transcripts. At the same time, full exon 266 
graphs do not have such flexibility. And this applies to both the structural diversity of transcripts, and a 267 
variety of lengths of transcripts. 268 
Finally, we modeled the effect of random perturbations on the different types of exon graphs and tested 269 
their ability to withstand such perturbations. Exact physical nature of random perturbations may be different, 270 
for example, it can be accidental loss of exon(-s) because of deletion at genomic DNA level or inclusion 271 
failure of exon(-s) into mature RNA because of mutations of the splicing cis-regulatory elements. The 272 
results of our modeling indicate that full exon graphs are significantly more robust to random attacks than 273 
power-law exon graphs. This difference is most clearly seen in the case where the robustness is estimated 274 
to change the length of the generated transcripts. 275 
 276 

3.2 DISCUSSION 277 

Power-law distributions appear in an enormous variety of fundamentally different complex systems: from 278 
engineering to biological and social systems [29,21]. Biological systems as the most complex systems are 279 
particularly rich in this phenomenon which is manifested at all levels of the organization of living organisms, 280 
from the molecular to the ecosystem level [30,29,31]. Therefore, we did not have a very surprise that the 281 
combinatorial properties of human exons are subject to the same law. More exciting here is the question 282 
why this phenomenon is so common in biological systems. Perhaps this is due to the fact which unique 283 
properties acquire of the system, when the distribution of some of its parameters obeys power-law. 284 
The first of these properties is scale-free of distribution [21]. We have seen this property in our data sets. 285 
For example, random sampling of GenBank data didn’t change the ratio between the numbers of exons 286 
with high and low values of ECI or randomly sampled sub-set of Ensembl data didn’t change the form of 287 
distribution (data not shown). The main outcome of scale-free is the scalability of the system without losing 288 
its characteristics. So, we may speculate that power-law component permits to adaptively scale up or scale 289 
down of the transcriptome in individual human cells in response to environmental conditions without change 290 
the critical system parameters. 291 
Second one is adaptive flexibility of system with power-law component. It was shown in the model and 292 
experimental studies that power-law distribution of any systemic parameter is a sign that the system is in 293 
the vicinity of phase transition or critical point [21,32]. Being close to the critical point, the system can be 294 
quickly reconstructed and can adapt to changing environmental conditions [33]. Our results are consistent 295 
with these ideas. In particular, our modeling shows that actively involving into splicing process or skipping 296 
even of small fraction of the exons with high value of ECI may substantially to change the possibilities for 297 
the formation of a variety of transcripts. Moreover, the theoretically possible diversity calculated on the 298 
basis of the structure of exon graphs is much greater than the experimentally confirmed diversity of the 299 



 

transcripts in human transcriptome. Consequently, human genes have significant hidden potential to 300 
produce different RNA molecules. Of course, it may be also due to incomplete of empirical data or the 301 
existence of obscure limits on the formation of some variants of the transcripts and this can be the topic of a 302 
special study. 303 
The third property of systems with power-law component is their sensitivity to accidental damages. Despite 304 
the fact that the complex biological systems can stably operate in various conditions they yet are fragile 305 
[34]. We see this in our model studies, the results of which show that the exon graphs are sensitive to 306 
random perturbations. To improve the robustness of such fragile living systems, the nature has taken the 307 
path of increasing diversity and complexity of regulatory mechanisms [27,28]. Splicing process is controlled 308 
by a variety of mechanisms based on a redundant inner diversity of the cis- and trans-regulatory factors. 309 
These factors are organized in a spatially and functionally distributed intracellular network with multiple 310 
positive and negative forward and feedback reverse regulatory circuits (Braunschweig U. et al., 2013). We 311 
believe that because of this, we could not find one or more predictors which completely would determine 312 
the value of the ECI. Instead of that, we found more than one hundred features which are involved in 313 
determining the value of ECI. A similar situation exists with other properties of splicing, for example, there 314 
was identified more than two hundreds predictors that determine the inclusion or exclusion of exon in/from 315 
the mature transcripts in the different type of human tissues [11]. 316 
In light of the problem of predictors, the most interesting and unexpected for the ECI were such features as 317 
the position of the exon in transcripts and the functional type of exon that requires special attention. In fact, 318 
the high-combinatorial exons are not only “hot points” of alternative splicing but they prefer to be located 319 
near the alternative transcription start and termination sites (but these exons usually are not 5’- or 3’-320 
terminal exons). Exon 8b of human RUNX1T1 gene is a typical example. And our metric “centrality of exon 321 
position in transcripts” reflects only average position of exon in transcripts, which include the exon of 322 
interest. However, this feature is highly informative. Moreover, we also believe that highly combinative 323 
exons due to the specific of their location are usually multifunctional (these exons can be 5’UTR, 324 
5’UTR/CDS, CDS, CDS/3’UTR and/or 3’UTR exon depends on transcript) and characterized by a middle 325 
level of conservatism. 326 
 327 

4. CONCLUSION 328 

In general, our results confirm the existence of the “exons-switches” of alternative splicing [1]. But we have 329 
obtained substantial refinements in this concept. In particularly, we showed that the “exons-switches” are 330 
part of common power-law phenomenon in human cells. We also found that the combinatorial properties of 331 
human exons are defined more than 90% by the multidimensional space of predictors that have different 332 
importance and different profiles of the marginal effects. Finally, we found that the power-law component 333 
gives the unique characteristics of the human genes. 334 
 335 
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