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Abstract
This paper is an introduction to the Fourier-Stieltjes transform of C∗-algebra valued measures. We
construct an involution on the space of such measures, define their Fourier-Stieltjes transform and
derive a convolution theorem.
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1 Introduction

Banach space valued vector measures play an important rôle in the geometric theory of Banach
spaces. For instance in Gel’fand (1938) the author used the theory of vector measures to prove that
L1[0, 1] is not isomorphic to a dual of a Banach space. See Diestel (1977) for interesting historical
notes. It is natural to think that C∗-algebra valued vector measures may be useful in the theory of
C∗-algebras. This paper is in some manner a contribution in that direction. Here we are interested in
the bounded C∗-algebra valued measures and their Fourier-Stieltjes transform.
The rest of the paper is structured as follows. In the section 2, we present basic elements of the
theory of C∗-algebras with examples. In the section 3, we construct an involution on the space of
bounded C∗-algebra valued measures on a locally compact group and finally in the section 4, we
defined the Fourier-Stieltjes transform and we prove a convolution theorem.

Aspects of the Fourier-Stieltjes transform of C -algebra
valued measures
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2 C∗-algebras: definition and examples
In this section, we recall whats is a C∗−algebra and we give various examples. Interested readers
can consult Averson (1976); Landsman (1998). All the vector spaces considered here are complex
vector spaces.

Definition 2.1. A Banach algebra is a Banach space A which is also an algebra such that

∀a, b ∈ A, ‖ab‖ ≤ ‖a‖‖b‖. (2.1)

Definition 2.2. An involution on an algebra A is a map ∗ : A −→ A such that

(a∗)∗ = a,

(a+ b)∗ = a∗ + b∗,

(ab)∗ = b∗a∗,

(λa)∗ = λ̄a∗.

for a, b ∈ A and λ ∈ C. A ∗-Banach algebra is a Banach algebra with an involution.

Definition 2.3. A C∗-algebra is a ∗-Banach algebra A such that for all a ∈ A,

‖a∗a‖ = ‖a‖2. (2.2)

The following result is well known as the ”C∗-condition”.

Proposition 2.1. A ∗-Banach algebra A in which ∀a ∈ A, ‖a‖2 ≤ ‖a∗a‖ is a C∗-algebra.

Let us give some examples of C∗-algebras.

Example 2.1. 1. The set of complex numbers C is the prototype of C∗-algebras. The norm is
the modulus |z| and the ∗ operation is the conjugaison z.

2. Let H be a complex Hilbert space. Denote by B(H) the set of bounded operators on H. Then
B(H) is a C∗-algebra with the norm

‖T‖ = sup{‖Tξ‖ : ‖ξ‖ ≤ 1}
and the involution T → T ∗ where T ∗ is the adjoint of T defined by

∀ξ, η ∈ H, 〈Tξ, η〉 = 〈ξ, T ∗η〉.

3. Let Mn(C) be the set of square complex matrices of order n. It is a C∗-algebra under the
matrix operations, the norm defined by

‖A‖ = (

n∑
i=1

n∑
j=1

|aij |2)
1
2

where A is the matrix A = (aij)1≤i≤n,1≤j≤n, and the ∗-operation A∗ = tA.
4. Let X be a compact Hausdorff space. Consider C(X) the set of complex continous functions

on X. Then C(X) is a C∗-algebra under the usual pointwise operations on C(X), the norm
defined by

‖f‖∞ = sup{|f(x)| : x ∈ X}
and the ∗-operation

f∗(x) = f(x).

Now for a locally compact Hausdorff space X one may consider the set C0(X) instead of
C(X) where C0(X) is the set of complex functons on X that vanish at infinity. Then C0(X) is
a C∗-algebra under the same operations, the same norm and the involution as C(X).
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3 A ∗-Banach algebra structure onM1(G,A)

Here we would like to trace how far the C∗ algebraic structure can infer the structure of the space
of vector measures on a locally compact group G. Let G be a locally compact group and let A be a
C∗-algebra. We denote by B(G) the σ-field of Borel subsets of G. Following Diestel (1977) we call
a vector measure any set function m : B(G) → A such that for any sequence (An)n≥1 of pairwise
disjoint elements of B(G) one has

m(
∞
∪
n=1

An) =

∞∑
n=1

m(An). (3.1)

A vector measure m is said to be bounded if there exists M > 0 such that

∀A ∈ B(G), ‖m(A)‖ ≤M.

The set of such bounded vector measures is denoted byM1(G,A). The variation of a vector measure
m is the set function |m| defined by

|m|(A) = sup
π

∑
n

‖m(An)‖,

where the supremum is taken over all the partitions π of A into pairewise disjoint measurable subsets
of A. If |m|(G) < ∞ then m is called a vector measure of bounded variation. To be concrete let us
give an example of a vector measure taken from Diestel (1977) and adapted to the case of a locally
compact group.

Example 3.1. We take G = Rd and we obviously denote by L1(Rd) and C0(Rd) the Lebesgue space
of complex integrable functions on Rd and the space of complex continous functions on Rd which
vanish at infinity respectively. The Fourier transform of f ∈ L1(Rd) is

f̂(x) =

∫
Rd
f(t)e−i〈x,t〉dt, x ∈ Rd. (3.2)

The function f̂ is a member of C0(Rd) and

‖f̂‖∞ ≤ ‖f‖1. (3.3)
Now let T : L1(Rd) → C0(Rd) be a bounded linear operator. A concrete example for T is for

instance the Fourier transform F on Rd. Define

m(A) = T (χA) (3.4)
where A is a member of the Borel σ-algebra of G. Then ‖m(A)‖∞ ≤ ‖T‖µ(A) where µ is the
Lebesgue measure of Rd. First notice that m is finitely additive. In fact if A and B are disjoint
measurable sets then

m(A ∪B) = T (χA∪B) = T (χA + χB) = T (χA) + T (χB) = m(A) +m(B). (3.5)

Therefore, for a sequence (An)n≥1 of pairwise disjoint measurable sets we have

‖m(
∞
∪
n=1

An)−
k∑
n=1

m(An)‖ = ‖m(
k
∪
n=1

An) +m(
∞
∪

n=k+1
An)−

k∑
n=1

m(An)‖

= ‖m(
∞
∪

n=k+1
An)‖

≤ ‖T‖µ(
∞
∪

n=k+1
An)

= ‖T‖
∞∑

n=k+1

µ(An)→ 0 when k →∞
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since the real series
∑
n

µ(An) is convergent and therefore the remainder
∞∑

n=k+1

µ(An) goes to 0

whenever k tends to ∞. We conclude that m is a vector measure taking values in the C∗-algebra
C0(Rd).

To move forward, we present some properties ofM1(G,A).
OnM1(G,A), one defines the norm:

‖m‖ = |m|(G) (3.6)

and the convolution product

m1 ∗m2(f) =

∫
G

∫
G

f(xy)dm1(x)dm2(y), (3.7)

where m1,m2 ∈M1(G,A) and f ∈ C0(G,A). And one has

‖m1 ∗m2‖ ≤ ‖m1‖‖m2‖.
It is well-known that

(
M1(G,A), ‖ · ‖, ∗

)
is a Banach algebra.

Proposition 3.1. If A is unital then so isM1(G,A).

Proof. Let us assume that A has a unit 1A. For A ∈ B(G), set

∆(A) = δ(A)1A =

{
1A if e ∈ A
0 otherwise

where δ is the Dirac mass at e (the neutral element in the group G). It follows that

∆ ∗m(f) =

∫
G

∫
G

f(xy)d∆(x)dm(y) =

∫
G

f(y)dm(y) = m(f),

that is ∆ ∗m = m. We have also

m ∗∆(f) =

∫
G

∫
G

f(xy)dm(x)d∆(y) =

∫
G

f(x)dm(x) = m(f),

that is m ∗∆ = m. Hence ∆ is the unit ofM1(G,A).

Proposition 3.2. M1(G,A) is an involutive Banach algebra.

Proof. We know already thatM1(G,A) is a Banach algebra. On this algebra, let us now define an
involution. For m ∈M1(G,A), set

mN(A) = m(A−1)∗, ∀A ∈ B(G). (3.8)

where A−1 = {x−1 : x ∈ A}, or equivalently

mN(f) =

∫
G

f(x−1)dm∗(x) (3.9)

where ∗ is the involution of the C∗-algebra A and f belongs to Cc(G;A), the space of A-valued
functions with compact support. One can esily check that the mapping m 7→ mN defines an involution
onM1(G,A).
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4 The Fourier-Stieltjes transform
Our analysis here borrows ideas from Assiamoua (1989a,b); Mensah (2013). Methods there were
applied to the case where G is compact. With a little adaptation we applied it to the case of a general
locally compact group. For more informations on the Fourier analysis on groups, on may consult
Deitmar (2009); Folland (1995); Mensah (2020).
There are various formulations of the Fourier-Stieltjes transform depending on the nature of the
underlying group and the structure of the codomain of the measures.

In the case G is abelian, the Fourier-Stieltjes transform of the vector measure m is

m̂(χ) =

∫
G

〈χ, x〉dm(x), (4.1)

where χ designates a character of the group G. If G is compact and A = C, then the Fourier-Stieltjes
transform of m is a family (m̂(σ))σ∈Ĝ of endomorphisms m̂(σ) : Hσ → Hσ given by the relation:

〈m̂(σ)ξ, η〉 =

∫
G

〈σ(x−1)ξ, η〉dm(x), ξ, η ∈ Hσ. (4.2)

where σ is a (class) of unitary irreducible representation ofG,Hσ is the representation space of σ and
Ĝ is the unital dual of G. When the group G is compact and A is a Banach space, the Fourier-Stieltjes
transform of a bounded vector measure m on G is defined and studied in Assiamoua (1989a). It is
interpreted as a family (m̂(σ))σ∈Ĝ of sesquilinear mappings m̂(σ) : Hσ ×Hσ → A given by:

m̂(σ)(ξ, η) =

∫
G

〈σ(x−1)ξ, η〉dm(x). (4.3)

We denote the conjugate space of Hσ by Hσ. We denote by Hσ⊗̂πHσ the completion of the
normed tensor product spaceHσ⊗Hσ with respect to the projective tensor norm π. See Ryan (2002)
for more informations on the tensor product of Banach spaces.

Let m be a vector measure on a locally compact group G. From Mensah (2013) we see that the
Fourier-Stieltjes transform of m is the collection (m̂(σ))σ∈Ĝ of operators m̂(σ) : Hσ⊗̂πHσ → A where
each m̂(σ) is defined by the integral

m̂(σ)(ξ ⊗ η) =

∫
G

〈σ(x−1)ξ, η〉dm(x). (4.4)

We denote by L(Hσ⊗̂πHσ,A) the set of bounded operators from Hσ⊗̂πHσ into A.

Proposition 4.1. Ifm ∈M1(G,A) and σ ∈ Ĝ then m̂(σ) ∈ L(Hσ⊗̂πHσ,A) and ‖m̂(σ)‖Hσ⊗̂πHσ→A ≤
‖m‖.

Proof. Let m ∈M1(G,A). For each σ ∈ Ĝ, we have

‖m̂(σ)(ξ ⊗ η)‖ = ‖
∫
G

〈σ(x−1)ξ, η〉dm(x)‖

≤
∫
G

‖〈σ(x−1)ξ, η〉‖d|m|(x)

≤ ‖ξ‖‖η‖|m|(G) = ‖ξ‖‖η‖‖m‖.

Thus m̂(σ) is a bounded operator and ‖m̂(σ)‖Hσ⊗̂πHσ→A ≤ ‖m‖.

Using arguments form (Assiamoua, 1989b, Lemma 4.1.5) applied to the underlying Banach
space structure of A, one obtains the injectivity of the Fourier-Stieltjes transform m 7→ m̂.
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Proposition 4.2. The map m 7→ m̂ fromM1(G,A) into
∏
σ∈Ĝ
L(Hσ⊗̂πHσ,A) is injective.

Proposition 4.3. Let m ∈ M1(G,A). Consider the bounded operator T ∈ L(Hσ⊗̂πHσ,A). Then
the mapping

x 7→ T [(σ(x−1)ξ)⊗ η]

from G into A is integrable with respect to m.

Proof. ∫
G

‖T [(σ(x−1)ξ)⊗ η]‖dm(x) ≤‖T‖‖ξ‖‖η‖
∫
G

χGd|m|

=‖T‖‖ξ‖‖η‖‖m‖ <∞.

Thus the map x 7→ T [(σ(x−1)ξ)⊗ η] is m-integrable.

For T ∈ L(Hσ ⊗Hσ,A) and m ∈M1(G,A), one defines the product ] by:

T][m̂(σ)](ξ ⊗ η) =

∫
G

T [(σ(x−1)ξ)⊗ η]dm(x). (4.5)

Then we have the following analog of the well-known convolution theorem.

Proposition 4.4. If m,n ∈M1(G,A) then

̂(n ∗m)(σ) = m̂(σ)]n̂(σ). (4.6)

Proof. Let m and n be inM1(G,A) and ξ ⊗ η ∈ Hσ ⊗Hσ. We have:

[m̂(σ)]n̂(σ)](ξ ⊗ η) =

∫
G

m̂(σ)[(σ(y−1)ξ)⊗ η]dn(y)

=

∫
G

∫
G

〈σ(x−1)σ(y−1)ξ, η〉dm(x)dn(y)

=

∫
G

∫
G

〈σ(x−1y−1)ξ, η〉dm(x)dn(y)

=

∫
G

∫
G

〈σ((yx)−1)ξ, η〉dn(y)dm(x) (Fubini)

=n̂ ∗m(σ)(ξ ⊗ η).

Hence
m̂(σ)]n̂(σ) = ̂(n ∗m)(σ).

5 CONCLUSIONS

In this study, we have constructed an involution on the space of bounded measures on a locally
compact group taking values in a C∗-algebra. The Fourier-Stieltjes transform of a C∗-algebra valued
measure has been defined and finally a convolution theorem has been proved.
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