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Aim: To propose an updated algorithm with an extra step added to the Newton-type 

algorithm used in robust rank based non-parametric regression for minimizing the dispersion 

function associated with Wilcoxon scores in order to account for the effect of covariates.  

Methodology: The proposed accelerated failure time approach is aimed at incorporating 

right random censoring in survival data sets for low to moderate levels of censoring. The 

existing Newton algorithm is modified to account for the effect of one or more covariates. 

This is done by first applying Mantel scores to residuals obtained from a regression model, 

and second by minimizing the dispersion function of these scored residuals. Diagnostic 

check of the model fit is performed by observing the distribution of the residuals and suitable 

Bent scores are considered in the case of skewed residuals. To demonstrate the efficacy of 

this method, a simulation study is conducted to compare the power of this method under 

three different scenarios: non-proportional hazard, proportional and constant hazard, and 

proportional but non-constant hazard.  

Results: In most situations, this method yielded reasonable estimates of power for detecting 

an association of the covariate with the response as compared to popular parametric and 

semi-parametric approaches. The estimates of the regression coefficient obtained from this 

method were evaluated and were found to have low bias, low mean square error, and 

adequate coverage. In a real-life example pertaining to pancreatic cancer study, the 

proposed method performed admirably well and provided a more realistic interpretation 

about the effect of covariates (age and Karnofsky score) compared to a standard parametric 

(lognormal) model.  

Conclusion: In situations where there is no clear best parametric fit for time-to-event data 
with moderate level of censoring, the proposed method provides a robust alternative to 
obtain regression coefficients (both adjusted and unadjusted) with a performance 
comparable to that of a proportional hazards model. 
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1. INTRODUCTION  18 

 19 

For interval scaled, non-censored data, Conover and Iman [1] have investigated the 20 
properties of regression analysis of the ranks of interval data as an alternative to ordinary 21 
least squares analyses. These contributions of Conover and Iman provided an alternative 22 
non-parametric rank-transform approach that allowed for the modeling of the impact of 23 
multiple continuous and categorical predictors on continuous outcomes. Howard and Koch [2] 24 
extended this approach to the univariate analysis of exponentially distributed right censored 25 
(survival) data by considering simple regression analysis of log rank scores, showing the 26 
performance of the approach to be similar to proportional hazards modeling. Their simulation 27 
studies show that in the case where there are no ties in the survival times, this approach was 28 
only marginally less powerful than tests from proportional hazards models, but clearly less 29 
powerful than a likelihood ratio test for a fully parametric model when the appropriate 30 
underlying survival function is employed. When there were tied survival times, this approach 31 
proved marginally more powerful than tests from Cox’s semi-parametric proportional hazards 32 
procedure. While their approach is generally reliable for the testing of associations with 33 
survival outcomes, it has the substantial shortcoming of not providing a clinically interpretable 34 
parameter quantifying the magnitude of the association between predictors and outcomes, 35 
such as the hazard ratio provides for proportional hazards analysis. This shortcoming arises 36 
due to the fact that when the response variable is replaced by its logrank score, it is not 37 
possible to estimate the true value of the regression coefficient in the original metric. Hence 38 
commonly used measures of assessing performance of the method such as bias, mean 39 
square error, and coverage cannot be deployed. Also, Howard and Koch [2] did not evaluate 40 
the performance of logrank scores when survival data comes from different distributions such 41 
as the loglogistic or the lognormal distribution and is hence not generalizable. 42 
 43 
Many authors such as Hougaard [3] have commented on the restrictions owing to lack of 44 
suitable estimation routines in the non-parametric case for an accelerated failure time model. 45 
Several semiparametric estimators accommodating censoring in survival data were proposed 46 
such as the modified least squares estimator by Buckley and James [4] and rank-based 47 
estimators based on the weighted log-rank statistics by Prentice [5]. The theoretical properties 48 
of these estimators were rigorously studied by Tsiatis [6], Ritov [7], Lai and Ying [8] and [9], 49 
and Ying [10] among others. Jin, Lin, Wei, and Ying [11] has discussed the reasons why 50 
despite theoretical developments, semiparametric approaches are rarely used in real life 51 
applications owing to the lack of efficient and reliable computational methods. They discuss 52 
how the inference procedure developed by Wei, Ying, and Lin [12] based on the minimum 53 
dispersion statistic is difficult and cannot be solved by conventional optimization algorithms. 54 
To overcome the limitations of the computational method developed by Lin and Greyer [13] in 55 
failing to always find a true minimum for the dispersion statistic, Jin et al., [11] have developed 56 
a linear programming method to minimize a convex objective function for the rank estimator 57 
based on Gehan [14] type weight function without having to indulge in nonparametric density 58 
estimation.                                                                                                                                                                                                                                                                                                                                                                                    59 
 60 
Advances in robust rank-based procedures have spawned a detailed methodology for 61 
analyzing linear and nonlinear models in a regression setting. This methodology applies the 62 
appropriate scoring function (such as the Wilcoxon scoring function) on the residuals arising 63 
out of a log-linear model rather than the response variable thereby allowing the estimation of 64 
the regression coefficient. This methodology has also been extended to diverse areas such 65 
as time-series analyses, random effects models, and censor-free survival data; however, 66 
reliable and easy-to-use developments to extend the approaches to the analysis of right-67 
censored (survival) data have not been investigated using this approach. In the context of the 68 
survival data analyses, by estimating the regression coefficient, this method therefore, has the 69 
potential to allow the practitioner to derive meaningful measures of the magnitude of the 70 
association such as the increase in median survival time (of treatment over placebo). 71 
 72 
By replacing the Euclidean (L2) norm by a rank-based norm, and by minimizing the dispersion 73 
function associated with this norm, it is possible to get robust non-parametric estimates of the 74 
regression parameters (Hettsmanperger and McKean [15]). Various diagnostic procedures 75 



 
 

 

that examine the quality of fit of these models and inference procedures to compute 76 
confidence intervals for parameters and their contrasts have also been developed 77 
(Hettsmanperger & McKean [15]). With non-censored data, these procedures outperform the 78 
traditional least squares methods when there are many outliers and influential points in the 79 
data set. The performance of these rank-based approaches is optimized when the underlying 80 
error density is known as it is possible to compute the optimal scoring function (McKean and 81 
Sievers [16]). These methods can therefore be extended to survival data and optimal scoring 82 
functions for many popular distributions used in analyses of time to failure data including 83 
exponential, Weibull, loglogistic and lognormal have been calculated. In order to counter the 84 
influence of outliers from affecting the model fit, various weighted versions of the rank-based 85 
model fit have been proposed (McKean, Terpstra, and Kloke [17]).  86 
 87 
Herein, we show how a fully non-parametric approach can be employed to estimate 88 
regression coefficients, and assess the impact of the approach across varying censoring rates 89 
from relatively low censoring rate as would be observed in an oncology study to a higher 90 
censoring rate as observed in cardiovascular outcome studies. Our analyses are focused on 91 
right censored survival data expressed as a log-linear model and the performance is 92 
assessed via a simulation study. 93 
 94 
In Section 2.1, we discuss in brief the general theory associated with the rank based 95 
procedures. Hettsmanperger and McKean [15] outline the Newton Raphson algorithm used to 96 
obtain the optimal regression parameter estimates. The R code for implementing this 97 
algorithm is due to Terpstra and McKean [18]. In Section 2.2, we discuss our motivation for 98 
extending these methods to account for right random censoring in survival data. In Section 99 
2.3, for the case where Wilcoxon scores are used as the scoring function (optimal for the 100 
logistic error density), we propose the addition of an extra step to this algorithm that 101 
incorporates the right random censoring mechanism inherent in survival data so as to 102 
reassign the Wilcoxon scores without violating the assumptions required by theory. This 103 
approach makes use of the fact that responses that have been censored carry partial 104 
information to the effect that an event has not occurred till the time of censoring but is likely to 105 
occur at some time in the future. In Section 2.4 we discuss the Bent score function as a 106 
diagnostic checking aid (and as an alternative) to the Wilcoxon fit of residuals in the case 107 
where the residuals are positively skewed. In Section 3.1 and 3.2, we simulated data from 108 
different scenarios reflecting different levels of censoring and different error densities. In 109 
Section 3.3, we present results obtained from applying the proposed method to a real-life data 110 
from a cohort of patients suffering from pancreatic cancer. The results obtained from our 111 
method are compared with those obtained from the traditional approaches that are otherwise 112 
used to analyze this data. Concluding remarks are presented in Section 4. 113 

 114 

2. MATERIAL AND METHODS 115 

  116 

2.1 Rank-based Methods for Linear Models  117 

 118 

In this section we give a brief discussion of the theory associated with developing linear 119 
models in the context of nonparametric regression that can be used to draw inference. 120 
 121 
Let Y denote a n x 1 vector of responses that follows the linear model: 122 

 123 
  Xβ1Y            (1) 124 

 125 
where 1  denotes a n x 1 vector of ones,  is an unknown scalar intercept, X is a n x p matrix 126 

of predictors (continuous or categorical), β  is a p x 1 vector of unknown constant regression 127 

coefficients, and   is the n x 1 vector of random errors. Let   be the column space of full 128 

rank design matrix X so that the dimension of   is p. The rank-based estimate of β  is given 129 

by: 130 
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)}(Argmin{||||Argminˆ βX βYβ


D  (2)132 

                   133 

Here, Argmin is the value of β  that minimizes ||||)( X βYβ 


D  and ||||   is the pseudo-norm 134 

used in the rank-based procedures that has replaced the Euclidean norm of the traditional 135 
least squares methods and is given by: 136 
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where the scores are generated as )}1/({)(  niia   for a non-decreasing square-integrable 138 

function )(u defined on the interval (0,1) and standardized such that   0)( duu , 139 
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v . Using this norm, various 140 

scoring functions can be generated such as the sign-pseudo norm of the form 141 

)2/1sgn()(  uu  and the Wilcoxon pseudo-norm of the form )2/1(12)(  uu . Thus in 142 

terms of these pseudo-norms, )(β


D is a convex function of β  and )ˆ(


βD is the minimized 143 

distance between Y and  . As the scores are standardized (they sum to zero) and the ranks 144 
are invariant to a constant shift, the intercept cannot be estimated using the norm and is 145 

usually estimated as the median of the residuals YYe ˆˆ  in the following way: 146 
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 148 
Hettsmanperger and McKean (1998) have shown that under some regularity conditions  149 
 150 
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 153 
They then applied this result to develop asymptotic test of hypothesis and other inferential 154 
procedures. A formal Newton-type algorithm to compute the estimates of the regression 155 
parameters by minimizing the dispersion function given in equation (3) has been proposed by 156 
Kapenga, McKean, and Vidmar [19] who have programmed the algorithm in the Fortran 157 
routine rglm (see Appendix A). 158 

 159 

2.2 Scoring Scheme in the Proposed Algorithm 160 

 161 

In this section we discuss modifications to this algorithm to accommodate survival data with 162 
right random censored observations. It is very important to note that the algorithm in Appendix 163 
A applies the Wilcoxon scores on the residuals and not directly on the observations which 164 
constitute the survival data. The proposed approach extends results (discussed below) 165 
obtained by Mantel [20] that were originally applied directly to survival data, by applying the 166 
scoring function to the residuals while retaining the assumptions required by the algorithm 167 
discussed in Appendix A. 168 
 169 

From equation (A.1) in Appendix A, it can be seen that the scoring function )}ˆ({ ea R  is a 170 

vector whose i
th
 component is )}ˆ({

i
eRa . Using the formula for )( u

f
  defined in the preceding 171 

section, Hetsmanperger and McKean [15] showed that for errors which follow a logistic 172 

distribution, )21(12)()}1()({)}({  uuneReRa   is the optimal scoring function and 173 



 
 

 

is called the Wilcoxon scoring function. Let X(1), X(2), X(3),…,X(n)  be the ordered statistics from 174 
a uniform distribution. If all the observations j = 1,2,3,…n are uncensored, it follows that E{X(j)} 175 
= j/(n+1) (see for instance (Casella and Berger, 2002). Furthermore, it can be shown that 176 
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

j
X . Thus, the Wilcoxon scoring function 177 

)21(12)(  uu applied over the ranked residuals represents the standardized expected 178 

values of the ordered statistics from a Uniform (0, 1) distribution. This scoring function 179 
satisfies the assumptions discussed in section 2.1 above.  However, it should be noted that 180 
no adjustment is made to account for censored observations in the sense that the scoring 181 
function does not distinguish between an event and a censored observation. 182 
 183 
Mantel [20] has obtained the expected values of the Uniform (0, 1) order statistics in the 184 
presence of arbitrary right censoring for survival data. Our proposed modification to the 185 
algorithm applies Mantel’s method to reflect change in scores for the ranked residuals that are 186 
associated with censored observations. As an illustration, consider the following hypothetical 187 
survival data sorted in ascending order where ‘E’ indicates an uncensored (event) observation 188 

and ‘C’ indicates a right censored observation:                                    189 

                                                                     . In this 190 

dataset of 10 observations sorted in ascending order, the first 2 observations are uncensored 191 
followed by 3 censored observations and then followed by 5 uncensored observations. For 192 
this particular ordering of events and censored observations, applying Mantel’s method we 193 
get: 194 
 195 
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for  j = 3, 4, 5;  
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 for  j = 6, 7, 8, 9, 10; 
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where i = 2 (first two uncensored observations), k = 3 (next three censored observations), n – 199 
i – k = 5.   200 
 201 
Since the first 2 observations are uncensored, they are assigned the scores of 1/11 and 2/11 202 
respectively. The next three events are censored observations and are each assigned a score 203 
of 6.5/11 which is the average over the interval 2 through 11 divided by n+1. The remaining 5 204 
observations which are uncensored are spread over kin  1  = 6 intervals so that the 205 

average width into which they would divide the remaining space is 206 

5.1)1/()}(1{
)(

 kinXRn
i

. Thus, 207 
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for  j = 8, 11/5.611/}2)5.1(3{)(E
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for  j = 10, 11/5.911/}2)5.1(4{)(E
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j

X ; 210 

  211 
The censoring mechanism dictates the allocation of scores to the observations depending on 212 
whether they are uncensored or censored values and depending on their order of their 213 
occurrence in the data set. It is important to note that with the allocation of these scores, 214 
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)(
2/1)E(/1( )  still holds. Further adjustments can be made for tied events. Thus for a 215 

consecutive sequence of m ties j,  j+1, j+2,…, j+(m-1), the expected values for each X(j) is 216 
averaged across the m ties. For tied censored observations, however, no adjustment is 217 



 
 

 

necessary reflecting the fact that the empirical distribution does not have any probability 218 
between successive uncensored observations and has all its remaining mass at or beyond 219 
the later uncensored observation (Mantel 1981). Thus consecutive tied censored 220 
observations share the same score (6.5 for the three tied censored observations j = 3, 4, 5). 221 
  222 

Here, it should be noted that equation (3) calls for )}1/({)(  niia   to be a non-decreasing 223 

set of scores, not all equal (Jaeckel [22]). However, the Mantel scoring scheme has assigned 224 
scores of 1/11, 2/11, 6.5/11, 6.5/11, 6.5/11, 3.5/11, 5/11, 6.5/11, 8/11 and 9.5/11 respectively 225 

to the observations                                                             226 

                                             that would make the convexity property 227 

of )(β


D not always hold in general (Jaeckel [22]). To overcome this problem, the censored 228 

observations          ,          ,              which resulted in a score of 6.5/11 need to 229 

be assigned new pseudo values. This is based on the assumption that a censored 230 
observation is a partially observed value and its true unobserved value is likely more than its 231 
observed (censored) value. Thus we need to find two consecutive event observations with 232 
respective scores     and    such that the conditions 6.5/11     and 6.5/11     are met. In 233 

this data set, we find that            and               two such event observations with 234 

respective scores   = 6.5/11 and   = 8/11. Therefore, the pseudo values for the three 235 
censored observations are generated as the average of 12 and 15 leading to a pseudo-value 236 
of 13.5. That is, we have now generated the scores as 1/11, 2/11, 3.5/11, 5/11, 6.5/11, 6.5/11, 237 

6.5/11, 6.5/11, 8/11 and 9.5/11 respectively for the observations                     238 

                                         (pseudo-value),         (pseudo-value), 239 

          (pseudo-value),                      . This results in a value of [1(1) + 2(2) + 240 

8(3.5) + 10(5) + 12(6.5) + 13.5(6.5) + 13.5(6.5) + 13.5(6.5) + 15(8) + 18(9.5)]/11 = 65.023 for 241 

)(β


D and ensures its convexity owing to the observations and their corresponding scores 242 

ordered in the same direction in the sum of equation (3).  243 
 244 
Every data set will thus have a unique scoring scheme based on the order in which events 245 
and censorings occur in the dataset. After the initial Mantel scoring, pseudo values will have 246 
to be generated for all the censored observations with their magnitude depending on first 247 
finding   and   , and then averaging out the magnitude of the observations corresponding to 248 
  and   . In cases where the largest observation in a dataset is an event and the Mantel score 249 
for any censored observation exceeds this largest event observation, the pseudo value for 250 
this censored observation will be the same as this largest event observation. When the 251 
largest observation in a dataset is a censoring, its Mantel score will always be more than that 252 
of the largest event observation and so there is no cause for concern. 253 

 254 

 255 

2.3 Steps of the Proposed Modified Algorithm 256 

 257 

In this section we enumerate the steps in our updated algorithm.  258 
 259 

Step (i) Obtain an initial estimate of the regression coefficients,
)0(

β̂ (say, the least squares 260 

estimate) and calculate the initial residuals as
)0)0( ˆˆ βXYe  . Rank these residuals in 261 

ascending order. Using the censoring mechanism inherent in the data set, reassign the ranks 262 
using the scores described in equation (6). By design, the average of these new ranks is 1/2. 263 
Calculate the standard deviation of these new ranks and denoted it by  . Apply the scoring 264 

function  /}5.0)(E{)}(E{)(
)()(


jjadjadj

eeja . Let
)0(

ˆ
adj

 denote the initial estimate of265 

adj
  based on these residuals. This is obtained by solving: 266 
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where  is the bandwidth used to obtain stable estimates of 
adj

 . For moderate sample 270 

sizes, where the ratio of n to the number of parameters p exceeds 5,  = 0.8 yields stable 271 

estimates. For more details about the theory associated with equation (7), refer to the text by 272 
Hettsmanperger and McKean [15] 273 

Calculate the dispersion function 
)0(

adj
D  using equation (3) evaluated at 

)0(
ê . Note that the 274 

assumptions of   0)( duu
adj

  and   1)(
2

duu
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  are true (see Appendix B for proof) and 275 

)}(E{)(
)( jadjadj

Xja   is a non-decreasing function. 276 

 277 

Step (ii) Using the projection matrix              onto the column space of X , obtain the 278 
residuals at the 1

st
 iteration of the algorithm using the relation: 279 
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where )}ˆ({ ea R
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 denotes the vector whose i
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 component is )}ˆ({
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 282 
Step (iii) and (iv) are the same as in the existing algorithm displayed in Appendix A except 283 

that we use the notation 
)( k

adj
D and 

adj
̂  in place of 

)( k
D and 


̂ . We retain the notation 


β̂  284 

and 
s

̂ for the estimates of the regression coefficients. 285 

 286 

2.4 Bent Scores 287 

 288 
McKean, Vidmar, and Sievers [21] have demonstrated that a gain in power in rank based 289 
analysis based on Bent scores can be obtained by choosing the specific scoring function 290 
appropriate for data. In particular, they have used the B75 scoring for residuals that are 291 
positively skewed in a random drug screening experiment (upper quartile of the residuals are 292 
assigned a constant score while the remainder of the residuals are a linear function of their 293 
ranks). These scores are estimated diagnostically after the initial Wilcoxon fit to the data 294 
produced highly skewed residuals. By diagnostically it is meant that the histogram of the 295 
residuals obtained from the Wilcoxon fit is used to estimate a reasonable Bent score. The real 296 
purpose behind this procedure of retrospectively using the residuals to estimate the scoring 297 
function is to investigate what types of scores are appropriate for the data at hand and must 298 
be used with caution in the case of small sample experiments (McKean et al., [21]). 299 
 300 
In this work, we also investigate the impact of moderate censoring (up to 50-60%) on these 301 
scores for the censored observations as compared to the uncensored observations. If more 302 
observations are censored, the residuals generated by a Wilcoxon fit are likely to be positively 303 
skewed. By using a Bent score function (such as the B75 score function), we are down-304 
weighing the upper quartile tail of the residuals. The Bent scores are composed of two linear 305 
pieces; a linearly increasing piece followed by a flat piece as follows: 306 
 307 
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Here d denotes the proportion of the flat piece. For more information on how to generate 309 
scores, refer to Policello and Hettsmanperger [22]. The actual scores are standardized as in 310 

  0)( duu
bent

  and   1)(
2

duu
bent

 . In our simulation study we have considered d = 0.25 311 

(B75 scores) as an adjustment to the Wilcoxon fit reflecting the extent to which skewness 312 
occurs in the distribution of the residuals. 313 
 314 
 315 

3. RESULTS AND DISCUSSION 316 

 317 

3.1 Simulating the Data 318 

 319 

Simulation is conducted for the following three scenarios: 320 
(i)   The survival times come from a loglogistic distribution with non-proportional and non-321 

constant hazards for the covariate of interest. 322 
(ii)  The survival times come from an exponential distribution with constant and proportional 323 

hazards for the covariate of interest.  324 
(iii) The baseline error density is loglogistic but the hazards are proportional for the covariate 325 

of interest (discussed in brief only). 326 
 327 
The first scenario results in an accelerated failure time (AFT) model where we consider a 328 
covariate potentially influencing the survival time. In the log-linear scale, therefore, the error 329 
density follows a logistic distribution for which we use a Wilcoxon scoring function that is 330 
optimal for this distribution (in the uncensored case). Additionally, we make use of a Bent 331 
scoring function in the case of positively skewed residuals (when applicable) resulting from 332 
the initial Wilcoxon fit. In the scenario where the error distribution arises from an exponential 333 
distribution, both the parametric AFT as well as the Cox proportional hazards (PH) model are 334 
applicable. In the uncensored case, the Wilcoxon scores have an asymptotic relative 335 
efficiency of 75% when applied to exponentially distributed data (Hettsmanperger  and 336 
McKean, [15]). However, performance with censoring has not been evaluated and we assess 337 
performance in the case of 30% censoring. In the third scenario, we have the situation that 338 
the Cox PH model yielding proportional hazards for the covariate is most appropriate, though 339 
the baseline hazards are generated from the loglogistic distribution. Thus for this case an AFT 340 
model may not be the appropriate choice and incorrectly applying it will reduce the power. 341 
Still, we briefly assess the performance of using Wilcoxon scoring function when there is 50% 342 
censoring in the data just to get an idea of how much power is lost when a mis-specified 343 
method is used. 344 
 345 
For the first scenario mentioned in Section 1, we simulated data by generating 1 000 346 
independent data sets of sample size N=100 observations from a loglogistic distribution in the 347 
following way. First, the number of simulations M was calculated using the formula given in 348 
Burton, Altman, Royston, and Holder [23] which is: 349 

 

2

21













 








Z

M  (10)  350 

where  was kept at 5 per cent level of accuracy of the true regression coefficient b. The 351 

value of   (standard deviation of the regression coefficient b) was obtained from 50 pilot runs 352 

of the simulation. For various values of coefficients b ranging from -2 to 2, M varied from 700-353 
900. So we set M=1 000 as the number of simulations. Performance evaluation measures 354 
such as bias of the estimate of the regression coefficient, mean square error of the estimate 355 
of the regression coefficient and coverage percentage of the estimate are evaluated by 356 
varying the strength of association of the covariate with the survival times, namely b = (-1, -357 
0.75, 0.75). The detailed steps used in simulating the data are provided in the Supplementary 358 
material.  359 
 360 
We have used R for writing the code. After verifying that our code, for uncensored data, 361 
yielded results same as obtained by using the R package Rfit written by Kloke and McKean 362 



 
 

 

[24], we modify it to incorporate censoring using our proposed algorithm in order to conduct 363 
the simulations. 364 

3.2 Simulation Results 365 

 366 

Table 1 displays the type I errors for these simulations. These results show that for our 367 
proposed method, the type I errors are inflated when there is more than 50% censoring in the 368 
data in the case of a loglogistic (LLG) error distribution though applying Bent scores alleviates 369 
them to a considerable extent (around 60%). Also, Wilcoxon scores yield inflated type I error 370 
rates when the underlying distribution is exponential (EXPL) for more than 30% censoring. 371 
 372 

Table 1.      Percentage Type I error rates for N=100, number of replications=10,000 373 

 Bent75  
      Scores 
___________ 

Wilcoxon 
Scores  

___________ 

Cox PH 
 

___________ 

Parametric 
AFT model 

___________ 

Logrank 
on response 

___________ 
Censor 

% 
LLG 

errors 
- 

1.41 
2.82

+
 

4.20
+
 

LLG  
errors 

EXPL 
errors 

LLG 
errors 

EXPL  
errors 

LLG 
errors 

EXPL  
errors 

LLG 
errors 

EXPL  
errors 

0 4.45 4.27 5.38 4.93 5.08 4.89 5.16 5.00 
30  4.64

+
 5.68

+
 5.25 5.27 5.44 4.15 5.04 5.05 

50 6.57
+
 12.60

$
 5.03 4.79 5.64 3.34 4.95 5.07 

60 11.01
$
 18.88

$
 5.00 4.79 5.89 3.37 4.85 5.02 

+  
Power simulations are conducted for these scenarios and then compared to the standard approaches 374 

$ 
 Situations with highly inflated alpha are not considered in the simulations 375 

  376 
Only those cases in which the empirical type I error rates are close to the nominal alpha of 377 
5% are considered for generating graphs for comparing the power of the proposed method 378 
with the traditional approaches. Power graphs for the first scenario (loglogistic distribution with 379 
non-proportional hazard) are displayed in Figure 1(a) through Figure 1(c) for three different 380 
levels of censoring (30%, 50%, and 60%). The power graph for the second scenario 381 
(exponential distribution with proportional and constant hazard with 30% censoring) is 382 
displayed in Figure 1(d). Analogously, Table 2 displays the numerical values for the power 383 
calculations shown in Figure 1 (a) through (c). Table 3 displays the simulations representing 384 
the second (Figure 1 (d)) and third scenarios (discussed briefly). In these tables, the 385 
abbreviations used are: BS = Bent scores, WS = Wilcoxon scores, AF = parametric AFT 386 
model, PH = Cox proportional hazards model, LR = logrank scores. 387 
 388 
Table 2.     Power for N=100; # of replications=1000; distribution=loglogistic (Figure 1(a) – (c)) 389 
 
Reg 
Coef 

Power 

30 % censoring 
______________________________ 

50 % censoring 
____________________________ 

60 % censoring 
_____________________ 

WS AF PH LR BS75 WS AF PH LR BS75 AF PH LR 

0.00 4.5 
16.8 
55.6 
87.8 
98.8 
100.0 

5.4 5.3 5.0 2.8 5.0 5.7 5.0 4.9 4.2 5.9 5.0 4.9 
0.20 23.8 16.1 17.1 8.6 16.5 20.4 15.9 14.4 9.8 17.3 12.8 13.5 
0.40 64.3 52.3 53.4 34.6 51.4 55.0 43.4 43.5 31.2 49.5 37.9 36.3 
0.60 91.7 84.1 83.8 66.4 84.0 85.5 75.6 73.6 65.6 78.8 68.2 66.5 
0.80 99.0 97.2 96.9 88.0 96.4 97.0 92.0 91.5 85.6 95.1 87.2 85.7 
1.00 100.0 99.5 99.6 98.8 99.6 100.0 98.3 98.4 96.9 98.8 97.1 95.7 

 390 
From Figure 1 and the tables, for the first scenario which represents non-proportional 391 
hazards, Wilcoxon scores provide power somewhat less than what is obtained from a 392 
parametric fit of an AFT (using the loglogistic distribution) model for 30% and 50% censoring 393 
in data. However, they do provide power slightly more than the (incorrectly applied) PH and 394 
LR methods. In case of 50% censoring, the B75 scores yield considerably less power than 395 
the Wilcoxon scores. For 60% censoring, the Wilcoxon scores cannot be used as the type I 396 
error is inflated and using the conservative B75 scores maybe the only alternative. As 397 
expected, an incorrectly specified Cox PH model performs less powerfully than our proposed 398 
method (in the case of 30-50% censoring) as does the GLM using logrank scores on the 399 
response whereas the parametric AFT model performs best.  400 
 401 



 
 

 

For the second scenario which represents constant and proportional hazards arising out of an 402 
exponential distribution, the Wilcoxon scores perform relatively well compared to the 403 
parametric model, the Cox PH model, and the GLM using logrank scores (as demonstrated 404 
by Howard and Koch [2]) on the response for 30% censoring in data. Again this is expected 405 
because an exponential distribution is a special case for which both PH and parametric AFT 406 
models are appropriate (with the regression coefficients related to each other). 407 
 408 
Table 3.      Power for N=100; # of replications=1000; Second (Fig 1(d)) and third simulation 409 
scenario 410 
 
Reg 
Coeff 

                                                     Power   

 
 

Scenario 2: Exponential Distribution [30 % censoring]  Scenario 3: [50 % censoring] 
 

BS75 WS AF PH LR  WS PH LR 

0.00 2.9 5.8 
9.8 

21.8 
40.8 
63.4 
81.6 
90.6 
97.1 
99.3 

100.0 

4.2 5.2 5.1  5.0 
7.4 

18.2 
30.9 
46.6 
62.6 
77.4 
85.6 
92.4 
96.7 

5.0 5.0 
0.25 6.3 8.4 9.9 8.6  7.1 8.0 
0.50 20.4 20.8 22.3 22.8  21.4 20.8 
0.75 34.4 43.0 45.3 44.1  38.5 39.1 
1.00 53.6 68.9 69.9 66.6  60.2 58.5 
1.25 68.0 85.5 85.7 84.5  75.4 77.4 
1.50 84.0 95.8 95.8 93.9  87.0 90.3 
1.75 96.3 98.8 98.2 98.5  94.0 96.7 
2.00 99.1 99.9 99.7 99.4  98.8 98.6 
2.25 99.9 100.0 100.0 99.9  99.7 99.7 

 411 
For the third scenario which represents proportional hazards for the covariate but has non-412 
constant baseline hazards (generated from a baseline loglogistic error density with 50% 413 
censoring), the Cox PH and the GLM on logrank scores have expectedly much higher power 414 
than the (mis-specified) log-linear model Wilcoxon scores. The parametric AFT model is not 415 
used here as in this case it is well known that in this scenario it will not perform well. To 416 
further assess the performance of the proposed method, performance evaluation measures 417 
such as bias of the estimate of the regression coefficient, mean square error of the estimate 418 
of the regression coefficient and coverage percentage of the estimate were used. In all 419 
scenarios, we obtained low bias, low mean square error, and adequate coverage (at least 420 
87% in all cases). Table 4 displays the results of these performance evaluation measures for 421 
the errors arising out of the loglogistic distribution (representing the first scenario) for three 422 
different values of the shape parameter, namely, s = {0.25, 0.5, 1}. For s = 0.25 and 0.5, the 423 
hazard function first increases and then decreases whereas for s = 1, the hazard is 424 
decreasing. Such hazards are often encountered in clinical trials related to cancer research 425 
where the loglogistic and lognormal distribution are used extensively to account for non-426 
monotone hazard functions. In such trials, it is important to summarize the improvement in 427 
median survival time following a treatment intervention as opposed to merely specifying a 428 
hazard ratio from using a Cox PH model (Royston, [25]).  429 
 430 
Table 4 Performance evaluation of the proposed method (N=100, replications=1000) 431 

Scenario )ˆ(b  SE )ˆ(b  Bias )ˆ(b  % Bias )ˆ(b  MSE %Coverage % power 

50% censored 
True b = -0.75 

s = 0.5 

 
-0.7350 

 
0.0344 

 
0.0150 

 
1.9960 

 
0.0014 

 
91.4 

 
58.4 

50% censored 
True b = 0.75 

s = 0.25 

 
0.7464 

 
0.0225 

 

 
-0.0036 

 
0.4827 

 
0.0005 

 
95.5 

 
95.1 

50% censored 
True b = 0 
s = 0.25 

 
-0.0036 

 
0.0225 

 
-0.0036 

 
* 

 
0.0005 

 
95.5 

 
4.5 

50% censored 
True b = -1 

s = 1 

 
-1.0097 

 
0.0638 

 
-0.0097 

 
0.9658 

 
0.0041 

 
88.1 

 
43.1 

* indicates % bias cannot be calculated as the true value of b = 0 yields a divide by 0 error. AFT432 



 

 

 
Figure 1 Power graphs for the first (Loglogistic distribution; 30% - 60% censor) and second (Exponential distribution; 30% censor) scenario  



 
 

 

3.2 Pancreatic Cancer Study Example 435 

 436 

We will demonstrate our method on a data set consisting of 106 patients who were 437 
prospectively identified with suspected pancreatic cancer over a 34-month period at the 438 
Division of Gastroenterology and Hepatology at the University of Birmingham at Alabama for 439 
stent placement [26]. The type of stent placed (plastic or metal) depended on certain 440 
evaluation criteria such as presence or absence of liver metastases, whether or not surgery 441 
was planned, and the Karnofsky score (K-score) for the patient. The K-score allows patients 442 
to be classified in terms of their functional impairment thereby allowing doctors to assess the 443 
prognosis in each patient. It is measured on a continuous scale of 0 to 100 in increments of 444 
10 with 100 indicating that the patient shows no evidence of diseases and 0 indicating that 445 
the patient faces certain death. Scores between 0-40 represent various gradations of 446 
disability and scores between 50-70 represent gradations of self-care ability with assistance. 447 
Scores ranging between 80-100 represent gradations of ability to conduct normal activity. 448 
Generally, patients with a K-score of more than 70 underwent metal stent placement while 449 
those with a score of 70 or lower underwent plastic stent placement, though there were 450 
some exceptions. The response measured is the time to death in months. Though other 451 
demographic variables and comorbidities are recorded as covariates, prior studies in this 452 
field suggest that once the prognosis is made, these are not important predictors of time to 453 
death. Thus, we shall initially consider only the K-score as a single continuous predictor of 454 
time to death, and later adjust for age as a covariate. This data set contains 68 events 455 
(64.2% deaths) while 38 observations (35.8%) were censored due to loss to follow-up. It is 456 
expected that all censored observations will die at some stage of pancreotibiliary 457 
malignancy, however, due to loss to follow-up there is no option but to treat these 458 
observations as censored, thereby carrying incomplete information about these patients.  459 
 460 
To analyze these data, various parametric AFT models were fit using the exponential, 461 
Weibull, loglogistic, lognormal, and generalized gamma distributions. Table 5 displays the 462 

results of these parametric fits with the parameter estimate b̂ representing increase in 463 

logarithm of time to death per unit increase in the K-score. It can be seen from the log-464 
likelihood and AIC values in this table, that the exponential distribution offers the most 465 
parsimonious fit to this dataset. As the K-score has gradations in increments of 10, we also 466 
evaluated the increase in time to death per 10-unit increase in the K-score. For the 467 
exponential distribution this value was 1.669 (95% CI: 1.438-1.937). We also fit a Cox PH 468 
model to this data and this resulted in a hazard ratio (HR) of -0.047 9 (standard error = 0.008 469 
2) per unit increase in the K-score. This corresponds to a HR for time to death of 0.618 (95% 470 
CI: 0.527-0.728) per 10-unit increase in the K-score indicating that patients with a higher K-471 
score live longer than those with a lower score. All model fitting assumptions were assessed 472 
as per the methods available in standard statistical texts.  473 
 474 
Table 5.      Parametric fit for the Pancreatic Cancer data  (N=106) with K- score as a 475 
continuous predictor 476 
Distribution )ˆ(b  SE )ˆ(b  Scale/ 

Shape 

P value LL 
 

AIC 
e

b̂10 [95% CI] 

Loglogistic 0.0606 0.0109 scale=0.743 <0.001 -134.853 275.707 1.833 [1.480-2.270] 
Lognormal 0.0601 0.0104 scale=1.283 <0.001 -133.956 273.913 1.824 [1.488-2.236] 
Exponential 0.0512 0.0076 scale=1 <0.001 -134.554 273.109 1.669 [1.438-1.937] 

Weibull 0.0511 0.0078 scale=1.005 
shape=1 

<0.001 -134.553 275.105 1.667 [1.431-1.942] 

Generalized 
Gamma 

0.0566 0.010 2 scale=1.187 
shape=0.383 

<0.001 -133.569 275.138 1.761 [1.442-2.151] 

 477 



 
 

 

Finally, we fit our proposed method that uses full non-parametric regression using Wilcoxon 478 

scoring on the residuals, to this data set (also shown in Table 6). We obtained b̂ = 0.045 4 479 

(S.E )ˆ(b = 0.007 67, P value < 0.000 1) as the parameter estimate for every one unit increase 480 

in the K-score on the logarithmic scale. This corresponds to exp(10 b̂ ) = 1.555 times 481 

increase in the time to death per 10-unit increase in K-score (95% CI: 1.314-1.839) again 482 
indicating significantly higher longevity for patients with high K-scores as compared to 483 
patients with low K-scores. 484 
 485 
The Wilcoxon fit of the residuals revealed five outliers with high negative values for the 486 
residuals. However, these correspond to five patients who were lost to follow-up immediately 487 
after the day of prognosis and hence their survival time was entered in the database as 488 
0.033 months (1 day). All five patients had high Karnofsky scores (four had a score of 90 489 
while one had a score of 80) and these observations correspond to patients about whom the 490 
least information was available. The gastroenterologists wanted to ensure that these 491 
observations do not influence the interpretation in any way and hence they were removed 492 

from the data set. The resulting Wilcoxon fit yielded an estimate of b̂ = 0.046 6 (close to the 493 

earlier estimate of 0.045 4) with a standard error of 0.008 39 (P value < 0.000 1) thereby 494 
demonstrating the robustness of the Wilcoxon fit. 495 
 496 
As part of a follow-up analysis, the gastroenterologists also wanted to assess the effect of K-497 
score on mortality after adjusting for age. Table 6 shows the results of these analyses in 498 
comparison to the best fit parametric (lognormal) AFT model. The lognormal AFT model 499 
(second column) suggests that after adjusting for age, every ten unit increase in K-score 500 
increases the time to death by a factor of 1.795 whereas the corresponding value for this 501 
factor using the proposed model with Wilcoxon scores, is 1.361. However, the lognormal fit 502 
also shows age as statistically significant (P value=0.041 9) implying that after adjusting for 503 
the K-score, every 10-year increase in age decreases the time to death by a factor of 504 
0.773(95% CI: 0.603-0.991), a result that is found to be somewhat surprising by the 505 
gastroenterologists. On the other hand, our proposed method with Wilcoxon scoring (third 506 
column) does not show age to be statistically significant (P value=0.119 1) after adjusting for 507 
K-score. The ten-year estimate is found to be 0.8564 (95% CI: 0.705-1.041). The fourth 508 

column in Table 6 shows how the results would change if the Normal scores )()(
1

uu 


509 

were used instead of the Wilcoxon scores. If the lognormal distribution were the best fit for 510 
the data, then an AFT model would have normally distributed errors, and we could expect 511 
comparable results by adopting the Normal scores. On doing so, we find that the parameter 512 
estimates for age and K-score are now qualitatively similar to the lognormal model.   513 
 514 
Table 6 Parametric and non-parametric fit with two covariates (N = 101) 515 

Covariate specifics Lognormal AFT Proposed method 
(Wilcoxon scores) 

Proposed method 
(Normal scores) 

 
Intercept 

b0 -0.7241 -0.7259 1.5771 
SE(b0) 1.1609 0.9539 0.8249 
P value 0.5328 0.4466 0.0559 

 
Age 

b1 -0.0258 -0.0155 -0.033 6 
SE(b1) 0.0127 0.0099 0.0098 
P value 0.0419 0.1191 0.00 6 

 
K-score 

b2 0.0585 0.0459 0.0308 
SE(b2) 0.0110 0.0085 0.0073 
P value < 0.001 < 0.001 < 0.001 

 516 
 517 



 
 

 

4. CONCLUSION 518 

 519 

Rank based non-parametric methods provide a robust alternative to parametric procedures 520 
in terms of their sensitivity to outliers and positive breakdown values for the estimates. In the 521 
uncensored case, it is known that the asymptotic efficiency of these methods depends on 522 
the optimality of the scoring function used to minimize the dispersion function of the 523 
residuals. The Wilcoxon scoring function is optimal for errors from a logistic distribution and 524 
reasonably efficient for errors from a normal distribution in a regression setting and hence 525 
can be extended to loglogistic and lognormal survival data. The proposed non-parametric 526 
method of modifying the Newton-type algorithm used to estimate the regression coefficients 527 
appears to work well for moderate random right censoring (up to 50%) in survival data both 528 
in the case of proportional and non-proportional hazards. The quality of the model can be 529 
assessed by performing a diagnostic check of the distribution of the residuals arising out of 530 
the Wilcoxon fit. For severely skewed residuals, the Bent scoring function can be used as an 531 
adjustment for higher levels of censoring in the data. In the simulations conducted by us, the 532 
B75 scores provided less power than the other methods. In practice, however, one may 533 
have to study the distribution of the residuals in greater detail and incorporate other types of 534 
Bent scores for modeling particular types of data sets. This procedure is akin to checking the 535 
model fits from a Cox PH model or from a parametric fit of the model and should be viewed 536 
as a diagnostic checking tool.  537 
 538 
In the limited scenarios that we have tested, this method has yielded estimates of the 539 
regression coefficients that have low bias, low mean square error, and adequate coverage. 540 
In cases where the proportional hazards assumption is not met and there is no clear winner 541 
among the popularly used parametric distribution, our proposed method may provide a 542 
reasonable alternative non-parametric solution that yields robust estimates of the regression 543 
coefficients. Both continuous and categorical predictors may be used allowing the 544 
practitioner to draw inferences about the significance of one covariate after adjusting for 545 
other covariates in a non-parametric way (though in our simulations we have incorporated 546 
only continuous predictors), something which cannot be done in a simple stratified analysis 547 
of the standard Kaplan Meier method. It remains to be assessed how this method will 548 
perform in the presence of interactions among covariates. This method has also been 549 
applied to a real-life data set from a Pancreatic cancer study and it proved to be a robust fit 550 
to the outliers present in that data set. Future work aims to compare the performance of this 551 
method with the other theoretical nonparametric and semiparametric methods mentioned in 552 
Section 1. 553 
 554 
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APPENDIX 652 
 653 
A. Newton algorithm by Kapenga et al., [19] 654 

i. Obtain an initial estimate of the regression coefficients, 
)0(

β̂ (say, least squares 655 

estimate) and calculate the initial residuals as 
)0()0( ˆˆ βXYe  . Let

)0(
ˆ


 denote the 656 

initial estimate of


 based on these residuals. Calculate the dispersion function 
)0(

D657 

evaluated at 
)0(

ê . 658 

 659 

ii. Using the projection matrix 
TT

XXXH
1

)(


 onto the column space of X , obtain the 660 

residuals at the 1
st
 iteration of the algorithm using the relation: 661 
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  where )}(
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i
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iii. Calculate the dispersion function 
)1(

D evaluated at 
)1(

ê . If 
)0()1(

DD  , this step is 666 

considered successful. If not, a linear search can be made along the direction to find 667 
a value that minimizes D . In general, the dispersion function at the k

th
 step is 668 



 
 

 

denoted by 
)( k

D and a rule to halt the algorithm is established by specifying a 669 

tolerance 
D

  such that  670 
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iv. If 
)( k

D obtains the minimum value for the dispersion function, then find 672 
)()(

ˆˆ kk
eYY  . Then the optimal estimate of the regression coefficients can be 673 

obtained using the relation 674 
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 676 

v. Obtain the final estimate of 


̂ and use it to calculate the standard error of 


β̂ using 677 

(5). Obtain 
s

̂ by finding the median of 
)(

ˆ
k

e . 678 

 679 
 680 

B.  Meeting assumptions of Section 2.1 681 

With reference to the proposed method meeting the assumptions in Section 2.1, 682 
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Similarly, 690 
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