Original Research Article

Effects of Seed Weights and Sowing Media on Germination and Early Growth of *Afzelia africana*. Smith ex pers.

ABSTRACT

Seed weight is essential in assessing seed quality traits, while sowing medium has significant role in seed germination. This study therefore assessed effect of seed weights and sowing media on germination of *Afzelia africana* seeds to enhancing sustainable production of the species.

Seeds of different sizes were collected, weighed and grouped into small (120), medium (120) and large (120) seeds. Each seed group was sown in three sowing media (washed river sand, decomposed sawdust, and forest top soil) replicated 4 times and arranged in Completely Randomized Design. The growth assessment comprised of 3 treatments which included seedlings from small, medium and large seeds and replicated 4 times. Plant height, leaf production and stem diameter were assessed fortnightly for twelve weeks. Biomass assessment was carried out twice (second week and twelfth week). Mean Daily Germination, Germination Percentage, Germination Energy, Peak Value, Germination value, Net Assimilation Rate and Relative Growth Rate were estimated. Data were subjected to analysis of variance (ANOVA)

Mean Daily Germination showed that large seeds sown in river sand large seed size sown in saw dust (T_4 and T_7) had highest value of 3.47 and 3.29 respectively with GV of 12.83.

There was significant difference (p < 0.05) in the effects of different sowing media and seed weights on the germination of A. africana. Saw dust gave the highest mean value with 52.777±0.28 while mean value of large sized seeds was highest (57.539±0.6). There was significant difference (p<0.05) in the effects of different seed weight on the height, collar diameter and leaf production.

Germination percentage of *A. africana* improved significantly with the sowing media and seed weight especially sawdust, river sand, and large seed size. It therefore suggested that *A. africana* seedling should be raised at nursery stage with river sand and Large seed size in order to increase the growth of plant and have more vigorous seedlings for plantation establishment..

Keywords: Sowing media, Biomass, Net Assimilation Rate, Relative Growth Rate

INTRODUCTION

Afzelia africana also known as African mahogany belongs to the family Ceasalpiniaceae. It is a multipurpose tropical African tree used as as agroforestry tree species. It is mostly recognized as vulnerable in some parts of Africa while it is categorized as endangered in Nigeria because of its high-grade timber for various wood constructions and furniture works (Bonou et al., 2009; Hutchings et al., 1996). It is a common commercial timber in Africa, and every part are good potential livestock fodders; flowers and oil from seeds are used for cooking (Ejikeme and Chukwuma 2011). A. africana can be recognized by its open crown, several branches and black fruits. It is a N-fixing tree, thus improves soil fertility through N and mineral –rich fallen leaves which mulch and provide nutrient and soil cover which protects the soil from erosion. In the eastern part of Nigeria, seeds of the species are processed for, while leaves serve as fodder for livestock. Roots of the

species are used to treat several ailments such as billorzia, eye problems, gonorrhea, chest pains, kidney problems and snake bites (Hutchings *et al.*, 1996).

The regeneration or mass production of many plants depends on seed and characteristic features. An immature diploid sporophyte that developed from zygote surrounding by nutritive tissue and covered by a seed coat is called a seed (Cendán *et al.*, 2013). Viable seeds are living entities. They must contain living, healthy embryonic tissue in order to germinate. Developed seed consists of an embryo with food reserves, enclosed in a seed coat. Moisture and temperature are key environmental factors that enhance germination of seeds and contribute to the growth of the germinants (Miles and Brown, 2007).

The life cycle of plants is dependent on germination and population dynamics often depend on it (Boyko *et al.*, 2010). In flowering plants, Environmental factors play crucial roles in both germination percentage and germination phenology in flowering plants (Li *et al.*, 2005; Lacey, 1996; Donohue, 2009; Figueroa *et al.*, 2010; Tielbörger and Petrü, 2010; Cendán *et al.*, 2013).

Factors such as photoperiod and temperature have been found to affect seed maturation and seed germination of many plant species (Boyko *et al.*, 2010; Figueroa *et al.*, 2010). Sizes of the seeds, as well which have greater impact on the emergence, timing and success of sown seeds (Castro, 2006) and within species, the mass of seeds is influenced by probability or time of germination (Hendrix, 1984). This is very essential because of the fact that it has been shown that seeds with more weights have an advantage over smaller ones as a higher proportion of bigger seeds will germinate and give rise to more vigorous seedlings (Baskin and Baskin 1998). However, there is dearth of information on how environmental factor and seed weight affect the germination of seed.

Seed physiological properties affect germination, seedling growth and plant development (Dutta, 1995). Plant seeds are characterized with different weights and this is could be ascribed to the size of the endosperm within the seed and it has been found to influence germination and consequently productivity of species (Escarre, 1991;Dutta, 1995). Seed size is a crucial seed quality trait, which influence growth and development of seedlings (Adebisi *et al.*, 2013). The nutrient content of seed is function of sizes of seeds and species (Arunachalam *et al.*, 2003).

A growing substrate is a solid medium that replaces the natural soil on which seedlings grow regularly by absorbing moisture and nutrients for growth and development (Douglass *et al.*, 2009). Several materials can aspire to be used for growing media preparation; however, the final choice depends the ability of the media to sustain plant growth (Parente *et al.*, 2000). This study therefore assessed effect of seed weights and sowing media on germination of *A. africana* seeds with a few to enhancing sustainable production of the species.

MATERIAL AND METHODS

Study area

 The experiment was carried out at Silviculture Nursery of Forestry Research Institute of Nigeria (FRIN) situated at Jericho Hill in Ibadan Nigeria which lies between latitude 7°23N and longitude 3°51 E. The climatic condition of the area is tropically dominated by rainfall pattern from 1400mm-1500mm with average temperature of about 31.2°C. The area experiences two distinct seasons dry and rainy seasons; the former starting from April to October and the latter commencing from November to March, (FRIN Meteorological Station, 2017).

Seeds of *A. africana* were collected from scattered mother trees at Olokemeji Forest Reserve in Ogun State, Nigeria and were processed. Based on weights measured with sensitive weighing balance (Plate 1), seeds were grouped into small (120) medium (120) and large (120) classes. Ten (10) seeds per treatment and replicated four (4) times were sown into three different germination media namely: washed river sand, decomposed sawdust, and forest top soil. Altogether, 360 seeds were used. Thirty-six (36) germination trays were filled with three different media and arranged in Completely Randomized Design in the screen house. Watering was done once daily and germination counts were taken daily for 28 days.

For the assessment of early growth of the species, uniform germinant from the three seed weights (Plate 2) were pricked and transplanted into polythene pots filled with 1kg top soil. The physiochemical properties of the experimental top soil was analysed at Soil Laboratory of Bioscience Department in Forestry Research institute of Nigeria (FRIN). The growth assessment comprised of three treatments which included seedlings from small medium and large seeds. Four (4) seedlings were made up of a treatment and replicated 4 times making a total of forty-eight seedlings. Watering of the seedlings was done daily and plant height, leaf production and collar diameter were assessed fortnightly for twelve weeks. Heights were measured from the root collar to apical bud using a graduated ruler while the numbers of leaves were counted and stem diameter was measured at about 2cm above the root collar with the use of digital caliper.

Biomass assessment was done twice; the first assessment was carried out at the end of the first two weeks after transplanting and the second biomass determination was at the end of the experiment (twelfth week). The same selected seedlings whose growths were assessed were subjected to destructive experiment (Plate 3).

The combined weight of the leaves, stems and roots of each specie accounted for the total weight. Leaves, stem and root of the experimental samples were excised with a sharp razor blade to separate the leaves, stems and roots. Fresh weights were determined using a Sensitive Weighing Balance and then oven dried to constant weight for twenty-four hours at 70°C. The net assimilation rate (NAR) and relative growth rate (RGR) were calculated.

102

103

104

114

118 119

125

126

127 128

129 130

131 132

Plate 1: Measuring of seed weight with sensitive weighing balance

Plate 2: Seedlings from the three seed weights A. africana

Plate 3: Selected Seedlings for Biomass Assessment

Data Analysis

Germination Percentage (GP), Germination Energy (GE), Mean Daily Germination (MDG), Peak Value (PV) and Germination value (GV) were determined with the use of the following equations according to Schelin et al., (2003):

- 1. Germination Percentage (%) = $\frac{total\ seeds\ germinated}{Total\ sseds\ sown}$ (Eqn. 1.)
- 2. Germination Energy (GE) is the percentage total of highest germination counts from the day it begins till when it starts diminishing divided by total seed sown.

```
GE = \frac{....x+y+z}{Total \, sseds \, sown} \, X \, 100....  (Eqn. 2.)
```

Where: x = the first highest germination count, y = higher germination count, z = high germination count

3. Mean Daily Germination percentage (MDG): This is cumulative total percentage of germinated seeds divided by exact germination day.

```
Cumulative Total Percentage of seed sown
MDG(\%)=
```

Where: x = Exact germination day

- 4. Peak Value (PV) is the highest value calculated as MDG
- 5. Germination Value (GV) is the product of the last day MDG and PV GV = Last day MDG X PV....(Eqn. 4)

Data were subjected to analysis of variance (ANOVA) and where there were significant differences; post-hoc analysis was carried out with Duncan Multiple Range Test (DMRT) in order to separate the means. The experimental design was a 3 x 3 factorial with three (3) sowing media and three (3) seed weights. There were 9 treatment combinations replicated 4

```
A1B1 = T_1, A1B2 = T_2, A1B3 = T_3, A2B1 = T_4, A2B2 = T_5, A2B3 = T_6, A3B1 = T_7, A3B2 = T_8, A3B3 = T_9
```

A- Sowing media: A1 -Top soil, A2 - River sand, A3 - Saw dust

B – Seed weights: B1 – Large, B2 – Medium, B3 – Small

RESULTS

Germination Percentage (%), Germination Energy, Peak Values, Mean Daily Germination and Germination values of A. africana seeds

Table 1 shows the result of the effects of seed weights on germination of A. africana seeds. The Mean daily germination (MDG) shows that the treatment with saw dust and large seed weight and river sand and large seed weight (T₇ and T₄) had highest value of 3.29 and 3.47 with the same Germination Value (GV) of 12.83 and 12.28. This was closely followed by Medium seed weight and Saw dust (T₈) with the MDG of 2.95 and GV of 12.27 respectively. The treatment with top soil and small weight (T₃) had the least value with MDG of 2.61 and GV of 7.07 (Table 1).

Table 1: Germination values of A. africana seeds under different sowing media treatments.

TREATMENT	GERMINATION %	GERMINATION	PEAK	MDG	GERMINATION
		ENERGY	VALUE	FINAL	VALUE
T_1	46.88	28	2.88	2.6	7.49
T_2	40.6	25	2.9	2.9	8.41
T_3	46.9	25	2.71	2.61	7.07
T_4	62.5	31.25	3.54	3.47	12.28
T ₅	50	41	3.65	2.79	10.15
T ₆	37.5	37.5	3.13	3.13	9.8
T ₇	62.5	37.5	3.9	3.29	12.83
T ₈	53.13	34	4.16	2.95	12.27
T ₉	43.75	28	2.87	2.43	6.97

Effects of sowing media and seed weights on the germination of A. africana seeds

There was significant difference (p < 0.05) in the effects of different sowing media, seed weights and interaction between sowing media and seed weights on the germination of *A. africana* (Table 2). However, mean value showed that seeds sown in saw dust gave the highest mean value with 52.777 ± 0.28 while the seeds sown in top soil gave the lowest mean value with 42.399 ± 0.24 (Table 2). Mean value of different sown seed weights were highest in large weight (57.539 ± 0.6) while small seeds gave the lowest value 39.521 ± 0.09 (Table 2).

Table 2: Analysis of variance for the influence of sowing media and seed weights on the germination of *A. africana* seeds

SV	Df	SS	MS	F-cal	P-Value
Sowing Media	2	511.693	255.847	234.684	.000*
Seed Sizes	2	1463.849	731.925	671.381	.000*
Sowing Media _∗ Seed Size	4	131.094	32.773	30.063	.000*
Error	18	19.623	1.090		
Total	26	2126.260			
Treatments		Post-hoc (means)			
Top Soil		42.399±0.24 <mark>a</mark>			
River Sand		49.711±0.30 <mark>b</mark>			
Saw dust		52.777±0.28 <mark>c</mark>			
Treatments		Post-hoc (means)			
Small Size		39.521±0.09 <mark>a</mark>			
Medium Size		47.827±0.29 <mark>b</mark>			
Big Size		57.539±0.16 <mark>c</mark>			

^{*=}significant at P<0.05

Means with the same letters are not significantly different (p> 0.05)

Effects of different seed weights on the mean height growth of A. africana seedlings

The result of Analysis of Variance (ANOVA) revealed that there was significant difference (p<0.05) in the effects of different seed weight on the height of *A. africana* seedlings (Table 3). Mean value shows that T₃ had the highest growth height of 71.438±0.61 cm while T₁ gave the least growth height of 35.218±0.45 cm (Table 3 and Fig.1)

Table 3: Analysis of Variance (ANOVA) for Shoot Height (cm), Collar Diameter (mm) and Leaf Production of different Seed weights of A. africana within 12 weeks

Parameters	SV	Df	SS	MS	F-cal	P-Value
	Treatments	2	11108.97	5554.49	46.600	.000*
	Errors	45	5363.78	119.20		
Shoot Height	Total	47	16472.75			
	Treatments	2	3.746	1.873	3.351	.044*
	Errors	45	25.149	.559		
Collar Diameter	Total	47	28.896			

Leaf Production	Treatments Errors Total	2 45 47	66.292 124.188 190.479	33.146 2.760	12.011	.000*
Shoot Height T ₁ T ₂ T ₃		Post-hoc (means) 35.218±0.45 <mark>a</mark> 45.738±0.52b 71.438±0.61c				
Collar Diameter T ₁ T ₂ T ₃		Post-hoc (means) 5.363±0.13a 5.377±0.11a 5.963±0.22b				
Leaf Production T ₁ T ₂ T ₃		Post-hoc (means) 5.375±0.14 <mark>a</mark> 6.688±0.17b 8.025±0.11c				

^{*=}significant at P<0.05

Means with the same letters are not significantly different (p> 0.05)

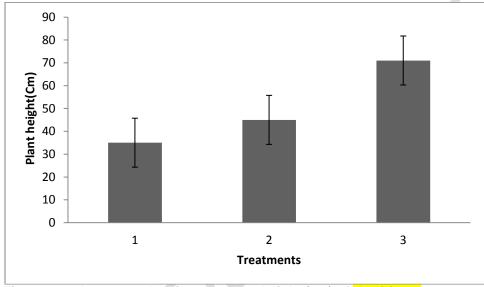


Fig 1: Growth pattern showing the mean height (cm) of *A. africana* within 12 weeks

Effects of different seed weights on the Mean Collar Diameter of A. africana seedlings

There was significant difference (p< 0.05) in the effects of different seed weights on the collar diameter of A. africana seedlings within the period of study. (Table 3). The mean separation test shows that T_3 had the highest collar diameter of the seedlings 5.963 ± 0.22 mm while T_1 had the least collar diameter of 5.363 ± 0.13 mm (Table 3 and Fig. 2)

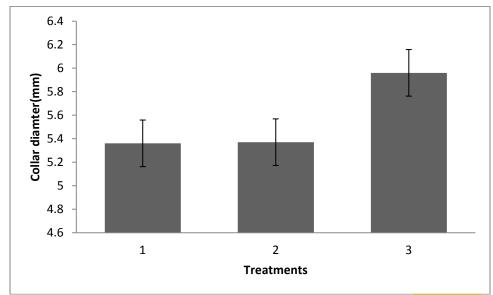


Fig 2: Growth pattern showing the mean stem diameter (mm) of A. africana within 12 week of study

Effects of different seed weights on leaf production of A. africana seedlings

The result of ANOVA indicated that there was significant difference (p< 0.05) in the effect of different seed weights on the mean leaf production of $\frac{A.\ africana}{A.\ africana}$ seedlings (Table 3). Post- hoc test shows that T_3 had the highest mean leaf production of 8 leaves while T_1 gave the least mean leaf production (Table 3 and Fig. 3).

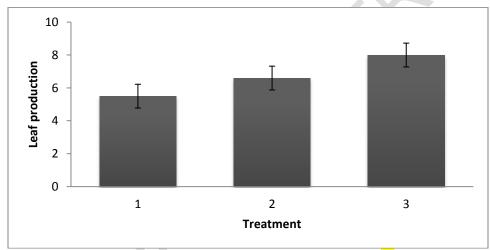


Fig 3: Growth pattern showing the mean leaf production of A. africana within 12 week of study

Biomass accumulation of A. africana at 2nd and 12th week of study

The result of biomass accumulation at 2^{nd} and 12^{th} week of study as influenced by seed weights is shown in tables 4 and 5. At both 2^{nd} and 12^{th} week, the large seed weight (T_3) had the highest biomass accumulation of 5.83g and 18.59g respectively while the least biomass accumulation were recorded for small seed weight (T_1) at 2^{nd} week (1.94g) and 12^{th} week (6.13g). Considering root, leaves and stem ratio, biomass accumulation of leaves were highest at 2^{nd} week (3.25g) and at 12^{th} week (8.45g). The biomass accumulation of stem at both 2^{nd} and 12^{th} week were the least (0.4g) and (1.47g) respectively.

Table 4: Biomass Accumulation of A. africana at 2nd week

Treatments	Root (g)	Leaves (g)	Stem (g)	Total (g)	
T ₁	0.55	0.99	0.4	1.94	
T_2	0.79	1.99	0.44	3.22	
T ₃	1.06	3.25	1.52	5.83	

Table 5: Biomass Accumulation of A. africana at 12th week

Treatments	Root (g)	Leaves (g)	Stem (g)	Total (g)
T ₁	1.92	3.72	1.47	6.13
T_2	2.49	6.15	2.73	11.37
T_3	3.54	8.45	6.6	18.59

Net Assimilation Rate (NAR) and Relative Growth Rate (RGR) for A. africana

Table 6 shows effects of seed weights on NAR and RGR of $\frac{A.\ africana}{A.\ africana}$ seedlings within 12 weeks of study. Large seed weight (T₃) had highest NAR (0.12 g/wk) and RGR (0.99 g/wk) while T₁ had the least of NAR (0.08 g/wk) and RGR (0.18 g/wk).

Table 6: Net Assimilation Rate (NAR) and Relative Growth Rate (RGR) for A. africana

	Treatments	Root (g/wk)	Leaves (g/wk)	Stem (g/wk)	Total (g/wk)
	T ₁	0.036	0.008	0.036	0.08
NAR	T_2	0.036	0.01	0.058	0.10
	T_3	0.039	0.014	0.066	0.12
	T_1	0.077	0.028	0.071	0.18
RGR	T_2	0.078	0.41	0.12	0.61
	T_3	0.082	0.78	0.13	0.99

Discussion

Seed weights and sowing media significantly affected the germination potentials of the seed of *A. africana* within the period of study. The highest values for large seeds on MDG, GP, GV and GE over medium and small seed weights depicts the importance of seed size on germination of the seeds. According to Adebisi, (2004) and Adebisi *et al.*, (2011), seed size is one of the components of seed quality which affects the germination ability of plant seeds. Gunaga *et al.*, (2011) expressed that seed weight and/or seed size is a widely accepted measure of seed quality and large seeds have high germinability, survival, seedling growth and establishment. The highest germination values of large seed size which could be ascribed to stored energy in the cotyledons of the seeds agreed with the finding of (Hojjat, 2011) who reported that the germination parameters were significantly related by seed weight. Kazeem-Ibrahim, (2019) reported that large seed size of *Caesalpinia bonduc* as influenced by sowing media performed significantly better than the medium and small seed size in terms of seedling emergence, mean daily germination, germination percentage and germination value. Higher and quicker germination in larger sized seeds could also be attributed to the presence of higher amount of carbohydrates and other nutrients than in medium and small sized seeds (Gunaga *et al.*, 2011).

Different seeds of indigenous tree species require various techniques and several factors for successful germination. One of important prerequisites is sowing media. After appropriate seed procurement, handling and processing for sowing, optimum germination of such seeds will be the function of suitable sowing media (Asinwa *et al.*, 2019).

The influence of sowing media was significant in the germination of A. africana with more germination potentials obtained from large seed size sown in sawdust when compared to other sowing media. The highest PV which is the function of MDG recorded for large seed size in river sand and saw dust could be attributed to aeration and absorption capability of the two media. The significance of interaction between sowing media and seed weight implies that appropriate sowing media couple with seed sizes is very essential to be considered when tropical seeds are being raised in the nursery. According to Arunachalam et al., (2003) moisture and aeration play key roles in germination of seed as they enhance metabolic activities in the seed.. The high germination percentage in river sand also agrees with the finding of (Dickens, 2011), who reported high germination percentage from seeds of Irvingia wombolu sown in river sand. The least germination potentials obtained from top soil in this study contrasted sharply with the findings of Okunomo (2000; 2004) who obtained a higher germination percentage in topsoil with Dacryodes edulis and Persia americana respectively. The least impact of top soil on the germination of different seed size disagrees with the findings of Okunomo, (2010) who observed higher germination percentage in topsoil with Parkia bicolor. It also contradicts Agboola and Adedire (2001) who reported highest germination percentage of Terminalia ivorensis; a tropical tree species in topsoil. This thereby implies that A. africana requires relatively more aeration and water percolation as evident in saw dust and river sand in comparison to top soil.

Plant growth and development are characterized by high degree of co-ordination and phasing. The growth of one part is closely related with the activities in other part of the plant which is enhanced and maintained by amount of reserved food. (Bawa and Krugma, 1991).

The result obtained on height, diameter and leaf production of *A. africana* from different seed weight agreed with work of (Nagaraju, 2001) that observed highest shoot height, leaf production and collar diameter from large sized seeds followed by medium compared to small seeds in sun flower seedlings. The differences in growth parameters of seedlings raised from vrious sizes therefore implies that initial stored food in the seeds play crucial roles in growth and development of the plant (Agboola and Adedire, 2001)..

The increase in plant dry mass per unit leaf area within period of study depicts biomass accumulation, NAR and RGR is influenced by efficiency of food production between plants of different sizes. It could be inferred that seed size significantly constitute to the germination and growth of seedlings in *A. africana*. Moreover, Seedlings from large sized seeds with highest growth parameters and highest biomass in term of root, stem and leaves conforms to the general assertion that the amount of reserves contained in the cotyledon (a correlate of seed size) is positively related with plant's growth potentials (Hall *et al.*, 2003).

CONCLUSION

The study has shown that the germination percentage of *A. africana* improved significantly with the sowing media and seed weight especially river sand, sawdust, and large seed weight. The increase in all parameters assessed within twelve weeks of study indicated that quantitative changes had occurred. This was also confirmed by the biomass yield assessment. It is therefore recommended that *A. africana* seedling should be raised at nursery stage on river sand medium using large weighted seed for vigorous seedlings with rapid growth for plantation establishment.

REFERENCES

Adebisi MA. Variation stability and correlation studies in seed quality and yield components of sesame (Sesamu Mindi cum L.). 2004. Ph.D.Thesis, University of Agriculture, Abeokuta, Nigeria.

Adebisi MA, Kehinde TO, Ajala MO, Olowu EF, Rasaki S. Assessment of seed quality and potential on gevityinelite tropical soybean (*Glycine Max* L.) Merrill grown in South western Nigeria. Nigeria. Agric .Journal, 2011;42:94-103

Adebisi M.A, Kehinde TO, Salau AW,. Okesola LA, Porbeni JBO, Esuruoso AO, Oyekale KO. Influence of different Seed Size Fractions on Seed Germination, Seedling Emergence and Seed Yield Characters in Tropical soybean (*Glycine maxL*.Merrill). International *Journal of .Agricultural .Researxh* 2013; 8:26-33.

Agboola PA, Adedire MO. Response of Treated Dormant Seeds of Tropical Tree species of Germination promoters. Nigerian Journal of Botany 2001:11:103110.

Arunachalam A, Khan MI, Singh ND. Germination growth and biomass accumulation as influenced by seed size in *Mesua ferra L. Turkish Journal of Botany.*, 2003:27:343-348.

Asinwa IO, Kazeem-Ibrahim F, Olaifa KA, Asabia LO Storage Potentials And Influence of Moisture Contents on The Germination oF *Vitellaria paradoxa* C.F. Gaertn *Journal of Research in Forestry, Wildlife & Environment* 2019: Vol. 11(2) June. 2019

Baskin CC, Baskin JM. Seeds: ecology, biogeography, and evolution of dormancy and germination. 1998: San Diego: Academic Press.

Bawa KS, Krugman SL. Reproductive Biology and Genetics of Tropical Trees in Relation to Conservation and Management. In Rainforest Regeneration and Management. Man and the Biosphere Series (eds) Gompez-pompa, A; Whitmore, T.C and Hadley. 1991:119-136pp.

Bonou W, Glèlè Kakai R, Assogbadjo AE, Fonton H, Sinsin NB. Characterisation of *Afzelia africana* Sm. habitat in the Lama Forest reserve of Benin

Forest Ecology and Management, 2009: 258 Pp. 1084-1092

Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Trans generational adaptation of Arabidopsis to stress requires DNA Methylation and the function of Dicer-like 2010:proteins Pp34.

Castro J. Short delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats.

Ann. Bot; 2006:98:1233–1240. [PMC free article] [Pub. Med]

Cendán C, Sampedro L, Zas R. The maternal environment determines the timing of germination in Pinus pinaster . Environ. Exp. Bot. 2013:94:66–72..

Dickens D. Effect of Propagation media on the Germination and Seed Performance of *Irvingia wombolu* (Vermoesen). *American Journal Biotechnology and Molecular Sciences*.ISSN print:21503698, ISSNonline2011:: 21593701, doi:10525/ajbms. 2011.1.2.51.56 ©science Hu,http://www.scihub.org/AJBMS2011

Donohue K. Completing the cycle: maternal effects as the missing link in plant life histories. Phil. Trans. R. Soc. B. 2009:364:1059–1074. [PMC free article] [PubMed

Douglass JF, Thomas LD, Tara Growing media. In: Dumroese, R. Kasten; Luna, Tara; Landis, Thomas D., editors. Nursery manual for native plants: A guide for tribal nurseries - Volume 1: Nursery management. Agriculture Handbook 730. Washington, D.C.: U.S. Department of Agriculture, 2009: Forest Service. p. 77-93

Dutta AC. Botany for degree students Revised Edition 6th edition Oxford University press. Delhi. Bombay, Madras. 1995:90 - 103pp.

- Ejikeme CM, Chukwuma SE Qualitative and Quantitative Determination of Photochemical Contents of Indigenous Nigerian Softwoods Hindawi Publishing Corporation *New Journal of Science* 2011: Volume 20, Article ID 5601327, 9 pageshttp://dx.doi.org/10.1155/2016/5601327
- Figueroa R, Herms DA, Cardina, J, Doohan D. Maternal environment effects on common groundsel (Senecio vulgaris) seed dormancy. Weed Sci. 2010:58:160–166.
 - FRIN. Annual Metrological Report of Forestry Research Institute of Nigeria, 2017:Pp 9, 2017.

- Gunaga R, Doddabasava P, Vasudeva R. Influence of Seed Size on Germination and Seedling growth in *Mammea suriga*. Karnataka Journal of Agricultural Science 2011:24:415416.
- Gunaga RP, Hareesh TS Vasudeva R. Effect of Fruit Size on Early Seedling Vigour and Biomass in White Dammer (Vateriaindica): vulnerable and Economically Important Tree Species of the Western Ghats. J. NTFPs, 2007:14:197-200.
- Hall JS, Mark P, Astone S. Graeme P. Seedling performance of four sympatric *Entandrophragma species* (Meliaceae) under simulated fertility and moisture regimes of a Central African Rainforest. *Journal Tropical Ecology* 2003:19: 55-66.
- Hendrix SD. Variation in seed weight and its effects on germination in Pastinaca sativa L. (Umbelli ferae) American. *Journal of Botany*. 1984:1984; 71:795–802.
- Hojjat SS, Effect of seed size on the germination and seedling growth of some lentil genotypes . *International Journal of Agricultural. Crop Science.*, 2011:Vol. 3.
- Houssard C, Escarre J. The effect of seed weight on growth and competitive ability Rumex acetosella from two successional old fields. Oecologia. 1991:86:236-242.
- Hutchings A, Scott, AH, Lewis G, Cunningham A. Zulu Medicinal: an inventory, 1996:University of Natal press, Pietermaritzburg.
- Kazeem-Ibrahim F. "Effects of Plant Growth Regulators on Rooting Potentials of *Caesalpinia bonduc* (L) Roxb. Cuttings" JWHSD, 5, 2019 3-11. Available at: http://www.hsdni.org/jwhsd/articles/
- Lacey EP. A growth chamber experiment to examine pre- and postzygotic temperature effects. Evolution. Plantago lanceolata 1996:50:865–878. [PubMed]
- Li ZQ, Yu DT UMA, SH. Seed germination of three species of Vallisneria (Hydro charitaceae), and the effects of freshwater microalgae. Hydro biological. 2005:544:11–18.
- Miles A, Brown M. Teaching Organic Farming and Gardening: Resources for Instructors. Santa Cruz: 2007:University of California Farm and Garden.
- NagarajuS. Influence of Seed Size and Treatments on Seed Yield and Seed Quality of Sun Flower Morden. M.Sc.Thesis, University of Agricultural Sciences, Dharwad, Karnataka, India. 2001: Pp87
- Okunomo K. Germination and Seedling Growth of Parkia bicolor (A.Cheu) as Influenced by Nursery Techniques. *African Journal of General Agriculture*, 2010:Vol.6.No.4
- Okunomo K. Orji EC. Agroforestry Technology: an environmental-friendly initiative. Nigerian *Journal of Research.Production*. 2004.4: 38-47
- Okunomo KU. Ureigho N. Opute HO. The effect of soil amendment on the performance of *Gambaya albida* seedlings. *European Jounal of Science. Research.*, 2000.13: 24415]
- Parente A, Serio F, Montesano, FF, Mininni C, Santamaria P. The compostof Posidonia residues: a short review on a new component for soilless growingmedia. Acta Hortic. 2000:1034, 291–298.
- Schelin M, Tigabu M, Eriksson I, Sawadogo L. Effect of scarification, gibberellic acid and dry heat treatments on the germination of Balantiesa egyptica seeds from the Sudanian savanna in Burkina Faso. Seed Science and Technology 2003:31:605-617
- Tielbörger K, Petrü M. An experimental test for effects of the maternal environment on delayed germination. *Journal of Ecology*. 2010:98:1216–1223.